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Experimental Design
 “Experimental Design” encompasses:

1. Strategies for organizing data collection
2. Knowledge of data generating processes
3. Data analysis procedures linked to those data collection 

strategies
 Suppose a researcher is interested in determining the effect of a 

treatment (e.g., school intervention) on an outcome (e.g., student 
achievement). 

 Typically, two groups are created: one treatment and one control 
group

 Typically, the designs are balanced (i.e., equal sample sizes in 
both treatment and groups)

 The effect is the change in the outcome of interest (e.g., change 
in achievement from pre- to post-test) because of the 
intervention/treatment implemented. This change in the outcome 
is designed to have a beneficial effect (e.g., increase 
achievement)
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Experimental Design: Analysis
 Analysis of Variance (ANOVA) is a traditional analysis 

procedure used to analyze data from randomized 
experiments including Randomized Control Trials (RCTs)

 Other appropriate analytic procedures include:
 Multiple linear regression
 Analysis of Covariance
 Multilevel or hierarchical linear models
 Statistical estimation applied to aggregate data 

(classroom or school level data)
 All these procedures estimate the mean difference in an 

outcome between treatment and control groups
 Analytic procedures should match research hypotheses, 

the research design, and a priori power analysis



4

Why Do We Need Experimental 
Design?

 Aim to identify treatment effects in the presence of variation 
(differences) of units and/or responses

 Variation exists because:
 Units (students, teachers, & schools) are not identical 
 Units respond in different ways to treatments

 We need experimental design to control this variability (i.e., 
equate treatment and control groups on average at the 
beginning of the study) and then identify treatment effects on 
outcomes of interest

 It is viewed as the strongest design to identify what causes a 
change in an outcome of interest when threats to the internal 
validity of the study are minimized and randomization is kept 
intact



History
 The idea of controlling variability by creating similar or 

equivalent groups through a research design has a long 
history

 In 1753 Sir James Lind’s published the treatise of the 
scurvy describing his study where 12 scurvy patients 
(sailors who spent much time in the sea) were assigned 
to six similar groups that received different treatments 
(proposed remedies)

 One of the treatments involved consumption of oranges 
and lemons (which are rich in vitamin C). People in that 
group showed dramatic improvement compared to the 
other groups



History
 In the late 1890’s, Fibiger examined the effectiveness 

of diphtheria antitoxin in treating diphtheria patients 
and assigned patients to a treatment (received 
antitoxin) or a control group (standard treatment) 
according to the day they were admitted (i.e., every 
other day patients were assigned to different 
groups) 

 In the 1930s, Amberson et al. (1931) used random 
assignment via a coin-toss to create equivalent 
groups to examine the effects of sanocrysin on 
pulmonary tuberculosis



History

 The first modern randomized clinical trial in 
medicine is considered the trial of streptomycin for 
treating tuberculosis 

 It was conducted by the British Medical Research 
Council in 1948

 Patients were randomly assigned to a group that 
took streptomycin and a group that did not  



History

 Another renowned RCT was the polio vaccine 
field trial conducted in the U.S. in 1954

 Children ages 6-9 were assigned to a treatment 
group that received the polio vaccine or a control 
group that received a placebo



History

 Studies in crop variation I – VI (1921 – 1929)

 In 1919 a statistician named Fisher was hired at 
Rothamsted agricultural station

 Rothamsted agricultural station had a lot of 
observational data on crop yields and hoped a 
statistician could analyze it to find potential 
effects of various treatments



History

 In a series of studies, within 8 years, Fisher 
invented the basic principles of experimental 
design and analysis of variance and covariance 

 He also invented control of variation by random 
assignment (i.e., laid out the basic concept of 
randomization) 

 RCTs are extensions of Fisher’s pioneering work 
on experimental design  



History
  In the field of education two eminent books introduced Fisher’s 

methodological foundations of experimental design and analysis 

 In 1940 Lindquist published his book about Statistical Methods in 

Educational Research that discussed random allocation of units and 

principles of experimental design and analyses 

 In the 1960s, Campbell and Stanley (1966) outlined 

methodologies for designing experiments and quasi-experiments as 

well as analyzing appropriately data from experiments



History
  In the field of education, a noteworthy large-scale RCT was 

conducted in the mid-1980s in the state of Tennessee, known as the 

Tennessee class size experiment or Project STAR (Student Teacher 

Achievement Ratio)

 A four-year experiment that followed a cohort of kindergarten 

students in 79 schools through third grade. In the first year of the 

study, within each school, kindergarten students and teachers were 

randomly assigned to either a small class, a regular size class, or a 

regular size class with a full-time teacher assistant 



History

  Since 2002 mainly due to the emphasis IES placed 

on rigorous research designs in education, and the 

availability of funding streams, there has been an 

abundance of RCTs 

 IES has funded more than 350 RCTs since its 

inception



Randomized Experiment 

 Experiment: deliberate interruption of an ongoing 

process to identify the effects of that interruption

 Randomized experiment: experiments that involve 

the creation of two or more groups, where participants 

are assigned randomly to these groups



Randomized Experiment 
 Random assignment is a procedure that assigns units to treatment and control 

conditions based only on chance, where each unit has a nonzero probability of 

being assigned to a condition. Randomization is a key process for causal 

inference

 This random process of assignment to groups uses for example the toss of a 

fair coin or the table of random numbers or computer generated random numbers 

and assignment

 Because allocation to treatment and control groups is based solely on the luck 

of the draw the treatment and control groups are on average equivalent on all 

known and unknown variables at the beginning of the study (the baseline)



Randomized Experiment 
 Because or randomization, the treatment and control groups 

are equivalent on average before the treatment starts and 

therefore we can compute the average outcome score of all 

inidividuals in the treatment group and then the average outcome 

score of all individuals in the control group and finally compute 

the mean difference. This is an average treatment effect across 

all individuals in the treatment and control groups
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Principles of Experimental Design
Objective: Control variability and identify 

systematic effects of treatments on outcomes
 Create sample groups that are on average 

equivalent at the beginning of the experiment
 Measures of traits are similar across groups
 Groups would have the same response if given 

the same treatment.

Methods to achieve this goal include:
   1.  Random Assignment
   2.  Matching
   3.  Statistical Adjustment

Quasi-experiments

Observational studies

“True” experiments
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Random Assignment
Controls for the effects of all characteristics: 
 observables or non-observables
 known or unknown
    Equates treatment and control groups on average on all 

characteristics at the baseline 
 Differences in outcomes after the treatment has been applied can 

be attributed to the treatment effect and not to preexisting 
differences between the groups (causal inference)

 Each unit (e.g., student, classroom, school) is assigned to a 
treatment or a control condition by chance (a random allocation 
mechanism) 

 The treatment and control conditions are then alike. In particular, 
treatment and control groups are equivalent on average at the 
beginning of the study, and changes in outcomes are due to the 
treatment only. Reasonably large numbers are needed for random 
allocation to groups (works best in the long run)
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Random Assignment

 It’s viewed as the gold standard in clinical research. The 
last 20 years, arguably, it is considered to be the gold 
standard in education research

 Currently randomized experiments are used frequently in 
education
 Strongest design for causal inference

 Notice that the unbiased assignment of units to treatment 
and control groups involves first randomization (the 
genesis of the unbiased random sequence) and second 
the unbiased (unaltered) implementation of 
randomization. The second component is very crucial in 
conducting infallible experiments
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Random Assignment
 When using random assignment, we do not have to 

know a lot to use it effectively
 We simply conduct random assignment of sample 

units to treatment and control conditions. That is, the 
randomization aspect of the study is straightforward. 
The implementation of randomization needs careful 
monitoring of course to ensure the experiment is not 
compromised or broken 

 It is good practice to measure important relevant 
covariates at the baseline of the experiment (e.g., in 
education it is crucial to measure prior achievement 
and SES) and include them in the analysis to achieve 
more precise estimation
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Compliance and Non-Compliance
 Compliers are individuals who will take the treatment 

if assigned to the intervention group and will not take 
the treatment if assigned to the control group (i.e., 
participants that comply with the assignment dictated 
by randomization)

 There are three categories of non-compliers: (a) units 
that, regardless of random assignment, will not take 
the treatment (never takers); (b) units that, regardless 
of random assignment, will always take the treatment 
(always takers); and (c) units who defy random 
assignment and do the opposite of what their 
assignment suggests (defiers) 
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Compliance and Non-Compliance
 When individuals are not complying with 

randomization results in systematic ways bias may be 
introduced in the treatment effect estimate. For 
example, suppose some students assigned randomly 
to the control group deliberately switch to the 
treatment group to receive the treatment (also called 
crossing over from one group to another). 
Alternatively, suppose some students in the treatment 
group intentionally decide not to take the treatment 
and switch to the control condition. Whenever 
switching between treatment and control groups is 
non-random, the risk of treatment effect bias 
increases 
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Intention to Treat
 One analytic approach that can serve as a bulwark to bias 

due to non-compliance is the intention to treat analysis 
(ITT). The treatment effect is estimated according to the 
individuals’ initial/original assignment to treatment or 
control groups through randomization, regardless of 
whether crossing over from one group to another took 
place (i.e., regardless of non-compliance) 

 The rationale of the ITT analysis is that all participants who 
were part of the original sample of the RCT and were 
assigned via some random allocation mechanism to a 
treatment or a control group are included in the statistical 
analysis of post-test outcomes regardless of whether they 
actually complied with their initial random assignment or 
not 
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Intention to Treat

 The ITT analysis does not produce the treatment effect for 
compliers; it produces the treatment effect of the treatment 
offered through randomization. Intuitively, as non-compliance 
rates increase the ITT effect deviates from the anticipated 
treatment effect for compliers
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Treatment on the Treated
 Analyses that examine the effect of “treatment on the treated” 

attempt to take into account whether, and often how much, of 
the treatment have participants received. This is about the 
effect of treatment actually received by participants (not 
offered)

 This effect could be biased because of selection. That is, if 
individuals who actually receive the treatment are 
systematically different (higher motivation, ability, SES, etc.) 
than those who did not receive it, the treatment effect is likely 
biased. Even controlling for important observed variables may 
not completely alleviate the selection issue (if unobservables 
are different between individuals who received and did not 
receive the treatment)  
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Instrumental Variables
 Instrumental Variables (IV) Estimation can be used to facilitate 

causal inference in this case
 Specifically, the IV procedure estimates the treatment effect for 

compliers. In experiments, a strong instrument is the initial random 
assignment to treatment or control groups. A two-stage approach 
can be applied to estimate the IV treatment effect for compliers. In 
the first stage, the binary variable that indicates whether a 
participant actually received the treatment (or not) is regressed on 
the binary variable of initial random assignment (randomization 
results)

 Covariates can potentially be included in the first-stage regression. 
The regression estimate of the initial random assignment binary 
variable in the first-stage regression captures the association 
between initial random assignment and actual receipt of the 
treatment and represents the degree of compliance 
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Instrumental Variables

 The first stage keeps the component of the binary variable that 
represents treatment actually received that is linked with the 
original random assignment process, and purges all non-
compliance processes. The fitted/predicted values of the first-
stage regression are used now as the treatment variable that 
predicts a dependent variable of interest (e.g., math 
achievement) in the second-stage outcome variable regression. 
The second stage regression may also include relevant 
covariates. This IV analysis offers a causal estimate of the 
treatment effect for compliers
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Matching
 Known sources of variation may be eliminated by matching 

(i.e., matching is conducted using measured/observed 
relevant variables or covariates)

 For example, eliminate district, school, or classroom effects 
before comparing students, that is, compare students in 
similar classrooms, schools or districts 

 Matching can take place in the design phase of a study or in 
the data analysis stage. For example, propensity score 
methods is one post hoc statistical method that creates similar 
groups using observed covariates to estimate a treatment 
effect. Matching including propensity score methods is based 
solely on measured, observed sources of variation 
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Matching

 Matching methods including propensity score methods  “mimic” 
random assignment (i.e., aim to balance baseline variables in 
treatment and control groups). Under the assumption that all 
relevant baseline covariates have been measured and used 
and there is no omitted variable bias, matching could be as 
good as random assignment. However, that is a strong 
assumption, the best-case scenario. In principle, it is always 
possible that an unmeasured variable could impact causal 
inference in matching    
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Matching

 Matching can only be performed on known and 
observable characteristics that have been measured

 Perfect matching is not always possible 
 It is critical to measure the right/relevant variables 

that will minimize variability and create more 
homogeneous groups (e.g., prior achievement, SES)

 May limit generalizability by removing possibly 
informative variation (e.g., differences in teachers)

 May reduce the sample size (because the variation is 
reduced) needed for the study (i.e., improves 
statistical power)
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Statistical Adjustment
 A form of post-hoc pseudo-matching that also mimics random 

assignment  
 Uses statistical associations between outcomes and 

controls/covariates to simulate matching
 Reduces variation of outcomes in regression and ANCOVA
 Controlling for covariates increases the precision of the 

regression estimates (i.e., smaller standard errors)
 Statistical control is possible using known and observable 

characteristics only
 Does not necessarily address all preexisting differences prior 

to assignment to treatment or control conditions. Ideally all 
relevant variables should be measured and included in the 
model. If the model is specified correctly, the treatment effect 
could be unbiased. But that is a strong assumption
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Principles of Experimental Design
 When using random assignment, we do not have to 

know a lot to use it effectively
 Simply conduct random assignment of sample 

units to treatment and control conditions
 That is, the randomization aspect of the study is 

straightforward. The implementation of 
randomization needs careful monitoring

 It is good practice to measure important relevant 
covariates at the baseline of the experiment (e.g., 
prior achievement, SES) and include them in the 
analysis to achieve more precise estimation
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 When using matching or statistical control, we have 
to think carefully, ahead of time, about which 
variables would be important/relevant to measure 
and control for in the analyses to circumvent 
potential omitted variable bias

 Some thorough thinking, when designing a quasi-
experiment or an observational study, is necessary 
in order to measure all relevant variables and 
include them in the analyses to produce equivalent 
groups and reduce bias

Principles of Experimental Design
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 Random assignment per se may not be as efficient as 
matching or statistical control (i.e., may require larger 
sample sizes for the same power) because it does not 
reduce, it controls variability 

 However, if covariates have been measured, they 
could/should be used in the power and the statistical 
analyses

 Including covariates in a regression model would 
reduce variability in the outcome and result in a more 
precise estimation (higher statistical power of the test) 

Principles of Experimental Design
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Independent Variables
 Categorical independent variables are also called factors.
 The categories of factors are called levels
 Some independent variables can be manipulated, others 

cannot:
 Treatments are independent variables that can be 

manipulated by the researchers and can cause an event 
we wish to measure

 Blocks (e.g., classrooms, schools) and covariates (e.g., 
gender, race) are independent variables that cannot be 
manipulated by the researchers

 Units can be randomly assigned to treatment levels, but not 
to blocks. For example, students within a school (the block) 
can be assigned randomly to a treatment or a control 
condition 
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Blocks
 Blocks are classes created for the purposes of 

forming homogeneous groups

 Blocks can be naturally formed groups (e.g., 
regions, states, cities, school districts, schools, 
grades, classrooms)

 Blocks can be known variables/factors (e.g., age, 
ability, health status)

 Blocks reduce variability (similar to matching and 
statistical control)
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Blocks
 We can assign randomly schools to treatment 

conditions within school districts (the blocks)
 Or we can assign randomly students or 

classrooms to treatment conditions within schools 
(the blocks)

 Or individuals with similar age can be grouped in 
homogeneous blocks and then random 
assignment to conditions may take place 

 Block effects should be taken into account in a 
priori power computations and in statistical 
analyses. Blocks could be random or fixed effects  
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 Example:  schools are randomly assigned to 
treatment conditions (treatment is at a higher 
level than schools)

    schools are then nested within each 
      treatment condition

         Schools
1, 2, … ,m  m + 1, … , 2m

Treatments

         1    2

Basic Ideas of Design: Nesting & 
Crossing
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 Example:  classrooms or students are randomly 
assigned to treatment or control conditions within 
schools (treatment is at a lower level than 
schools/blocks)

   treatments are then crossed with schools 
(blocks) 

Basic Ideas of Design: Nesting & 
Crossing

Schools

1 2 … m

T1 T2
…

T1

T2 T1 T2
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Three Basic Designs
 Completely Randomized Design
 Treatments are randomly assigned to individuals (e.g., 

students). Nesting is not considered
 Cluster or Group Randomized Design
 Also called a Hierarchical Design
 For example, schools are assigned randomly to treatment or 

control groups and the same treatment is assigned to all units 
within the school (classrooms and students)

 Randomized Block Design 
 For example, students are assigned randomly to treatment and 

control conditions within schools or grades (the blocks)
 Larger units such as classrooms can also be assigned 

randomly to treatments within schools or grades (the blocks)
 This design is also known as a multisite design where blocks 

are the sites 
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Completely Randomized Design
 Individuals are randomly assigned to one of two 

treatments:
Treatment Control

Individual 1 Individual 1

Individual 2 Individual 2

… …

Individual n Individual n
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Cluster or Group Randomized Design
 Schools are randomly assigned to one of two 

treatments, all students within schools receive 
the treatment:
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Randomized Block Design
 Individuals are randomly assigned to one of two 

treatments within their school (the block or site):



Randomization Procedures

 Could use a table of random numbers. Be sure to 
pick an arbitrary starting point each time

 Could use random number generators in statistical 
software packages. Be sure the seed value varies 
each time

 Lottery (random picks) 

 Flipping a fair coin



Post Hoc Test to Check Randomization

 It is common practice to check whether random 
assignment was successful using observed variables 
at baseline (i.e., check baseline equivalence of 
measured variables) 

 This is particularly important when the overall attrition 
and the attrition in treatment or control groups (i.e., 
differential attrition) is not low  

 This is a post hoc procedure that can identify variables 
where random assignment did not work as expected 
by design (i.e., the means of baseline covariates in the 
treatment are different than those in the control group)



Post Hoc Test to Check Randomization

 This procedure cannot discredit randomization per se (e.g., a 
mean difference may be observed by chance). However, 
when there is systematic evidence about mean differences, 
this may indicate that the implementation of random 
assignment may have been flawed

 Mean differences should not be significant (but that depends 
on the sample size). More importantly, the magnitude of the 
mean difference should not exceed 0.25 standard deviations 
(according to WWC)

 Regression or ANCOVA can be used to check imbalance in 
baseline covariates. The model should include all relevant 
measured covariates identified and used in the outcome 
variables regressions 



Post Hoc Test to Check Randomization

 What Works Clearinghouse (WWC) offers some useful 
guidelines about baseline equivalence of observed 
variables between treatment and control groups

 WWC offers some useful suggestions about attrition as 
well 

 https://ies.ed.gov/ncee/WWC/Docs/referenceresources/Fi
nal_WWC-HandbookVer5_0-0-508.pdf

https://ies.ed.gov/ncee/WWC/Docs/referenceresources/Final_WWC-HandbookVer5_0-0-508.pdf
https://ies.ed.gov/ncee/WWC/Docs/referenceresources/Final_WWC-HandbookVer5_0-0-508.pdf
https://ies.ed.gov/ncee/WWC/Docs/referenceresources/Final_WWC-HandbookVer5_0-0-508.pdf
https://ies.ed.gov/ncee/WWC/Docs/referenceresources/Final_WWC-HandbookVer5_0-0-508.pdf
https://ies.ed.gov/ncee/WWC/Docs/referenceresources/Final_WWC-HandbookVer5_0-0-508.pdf
https://ies.ed.gov/ncee/WWC/Docs/referenceresources/Final_WWC-HandbookVer5_0-0-508.pdf
https://ies.ed.gov/ncee/WWC/Docs/referenceresources/Final_WWC-HandbookVer5_0-0-508.pdf
https://ies.ed.gov/ncee/WWC/Docs/referenceresources/Final_WWC-HandbookVer5_0-0-508.pdf
https://ies.ed.gov/ncee/WWC/Docs/referenceresources/Final_WWC-HandbookVer5_0-0-508.pdf
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A Useful Framework for Clustering:
Sampling Models



Sampling Models

 They are closely linked with the research design 
and the statistical analysis stages 

 Example: Which sample will provide a more 
precise mean estimate? 
 Sample A, with N = 1,000
 Sample B, with N = 3,000

 It is sample B because if the total population 
variance is σT

2 then the variance of the sample 
mean is σT

2/N (which indicates smaller variances 
of means in larger samples) 
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Sampling Models in Educational Research

 Simple random samples are rare in large-scale field 
research in education

 Education populations have nested structures 
(multiple levels, units of different sizes – students, 
classes, schools, districts) 
 Students at the first level, classrooms at the second level, 

schools at the third level, school districts at the fourth level
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Sampling Models in Educational Research

 Survey research in education often exploits this multilevel 
structure, for example by first sampling schools and then 
students within schools

 This sampling strategy is called multi-stage (multilevel) 
cluster sampling in survey research

 Example: Clusters such as schools are first sampled and 
then individuals such as students within clusters are 
sampled
 Two-stage (two-level) cluster sample

 Example:  Schools are first sampled, then classrooms 
within schools, then students within classrooms
 Three-stage (three-level) cluster sample



52

Variance of the Mean of Clustered Samples: 
Two Levels 
 Suppose we have n level-1 units within each level-2 

unit and m level-2 units overall 
 Assume a sample size              and a total 

population variance       defined as

 

 If the sampling strategy had been simple (e.g., 
simple random sampling of students across 
schools) the variance of the mean would be:

𝑁𝑁 = 𝑚𝑚𝑚𝑚
σ 2

T

𝜎𝜎𝑇𝑇2

𝑚𝑚𝑚𝑚

2 2 2
Tσ σ τ= +

where 𝜏𝜏2 =  Level−2 variance, 𝜎𝜎2 = Level−1 
variance 
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Variance of the Mean of Clustered Sample: 
Two Levels

 When cluster sampling is also involved however, 
the variance of the mean is

2 2 2 2n
m mn mn
τ σ σ τ+

+ =
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Variance of the Mean of Clustered Sample: 
Two Levels
 The intraclass correlation coefficient (ICC), ρ,     

defined as the proportion of the second level variance 
to the total variance represents clustering

 If we write ρ = τ2/(σ2 + τ2), the variance of the mean 
becomes:

 where                           is called the design effect (it 
inflates the variance by a number greater than 1 when

           ) and captures clustering 

( ) ( ) ( ) ( )
2 2 2 2

1 1 1n n
mn mn

σ τ σ τ
ρ ρ ρ

+ +
− + = + −      

( )1 1n ρ+ −  

0ρ ≠
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Variance of the Mean of Clustered Sample: 
Two Levels
 Specifically:

 Or 𝜎𝜎𝑇𝑇2

𝑚𝑚𝑚𝑚
1 + 𝑛𝑛 − 1 𝜌𝜌
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Variance of the Mean of Clustered Sample: 
Three Levels

 Suppose now we have n students (level-1 units) 
in p classes (level-2 units) in each of m schools 
(level-3 units) 

 Assume a sample size               , and a total 
population variance

    where σ2, τ2 and ω2  are the first, second and    
    third level variances respectively 
If the sampling strategy had been simple (e.g., 
simple random sampling of students across 
classrooms and schools) then the variance of the 
mean would be:

=N mpn

( )σ 2
T

mpn

𝜎𝜎𝑇𝑇2 = 𝜎𝜎2 + 𝜏𝜏2 + 𝜔𝜔2
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Variance of the Mean of Clustered Sample: 
Three Levels
 When cluster sampling is also involved however in 

the first and second stages of sampling (e.g., 
cluster sampling of schools and then cluster 
sampling of classrooms) two ICCs, ρ3 (third or 
school level) and ρ2 (second or classroom level) 
can be defined to capture clustering at both levels

 The second level ICC is defined as 
  ρ2 = τ2/(σ2 + τ2 + ω2)
 The third level ICC is defined as 
  ρ3 = ω 2/(σ2 + τ2 + ω2)



58

Variance of the Mean of Clustered Sample: 
Three Levels
 The variance of the mean is now:

 The three-level design effect is:

and captures clustering at the second and third levels 

( ) ( ) ( )
σ

ρ ρ + − + − 

2

2 31 1 1T n pn
mpn

( ) ( )ρ ρ + − + − 2 31 1 1n pn
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Design Effect
 In two-stage sampling the design effect depends on 

n and the ICC. When both are small the design 
effect should be close to one. When both are large 
the design effect could be much larger than one 
(e.g., 5, 10). In practice the square root of the 
design effect can be used to correct standard errors 
of regression estimates produced from typical 
regression models (when cluster sampling is 
assumed). Specifically, one can multiply the square 
root of the design effect with the standard error of 
the regression estimate produced from a typical 
regression model 
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Design Effect

 In three-stage sampling the design effect 
depends on n, p and the ICC’s. When n, p and 
the ICC’s are small the design effect should be 
close to one. When n, p and the ICC’s are large 
the design effect could be much larger than one. 
Again, to correct the standard errors for cluster 
sampling at two levels (classes, schools), one 
can multiply the square root of the design effect 
with the standard error of the regression estimate 
produced from a typical regression model 
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The ICC
 The ICC is defined as a variance ratio. It is the 

proportion of total variance in the dependent 
variable that is attributable to clusters (the larger 
units) 

 For example, suppose students are nested within 
schools and the outcome variable is at the 
student level (achievement scores). Then, the 
ICC is the proportion of the variance in 
achievement scores attributed to schools. That 
is, the ICC is the ratio of the between-cluster 
variance to the total variance in the dependent 
variable 



62

The ICC
 If the total variance is 1 and the between cluster variance 

is 0.2, the ICC = 0.2. This means 20% of the total 
variance in the outcome variable is attributed to the 
variance between clusters and 80% of the total variance 
is attributed to the variance within clusters. The ICC 
ranges from 0 to 1. Zero indicates no between cluster 
variance (no clustering) and 1 indicates no within cluster 
variance. Increases in ICC indicate differences between 
clusters (more heterogeneity between clusters and more 
homogeneity within clusters). Smaller ICCs indicate more 
homogeneity between clusters (reduced differences 
between clusters) and more heterogeneity within clusters
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Variance of the Mean of Clustered Sample

 The sampling model used dictates the variance 
structure and estimation

 Variance impacts:
 Precision of the treatment effect estimates (standard 

errors)
 Statistical power (inverse relationship)
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Nesting in Multilevel Models 

 Nesting is a similar notion to clustering. That is, a 
related useful framework capitalizes on data 
dependencies because of the nesting of lower-level 
units within higher-level units

 For example, students grouped in the same 
classroom are more alike than students grouped in 
a different classroom. It is possible that the 
outcomes of students in the same classroom covary 
or are correlated to some degree and this data 
dependency (covariance or correlation) should be 
taken into account when estimating the variance of 
the mean  
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Inferential Population and Inference Models
 The inference model has implications for 

analyses and therefore for the design of 
experiments

 Question to consider: Do we make inferences to 
the schools in this sample or to a larger 
population of schools?
 Inferences to the sampled schools or classes in the 

sample are called conditional inferences
 Inferences to a larger population of schools or 

classes are called unconditional inferences
 Bottom line:  The inference in conditional is different 

than that in unconditional models
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Inferential Population and Inference Models

 In a conditional inference, we are estimating the 
mean treatment effect in the observed schools in 
the sample

 In an unconditional inferences, we are estimating 
the mean treatment effect in the population of 
schools from which the observed schools were 
sampled

 In both cases, a mean treatment effect is 
estimated, but they are different parameters with 
their own respective variances
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Fixed and Random Effects

 Fixed Effects
 The levels of a factor in a study constitute the entire 

inference population
 The inference model is conditional
   The factor is called fixed, and its effects are called 

   fixed effects
 Random Effects
 The levels of a factor in a study are sampled
 The inference model is unconditional
   The factor is called random, and its effects are                                           
          called random effects



68

Specifying Analyses
Know the inference model

 Think through the levels of the design that will be 
included in the analysis

 Decide on the inference model for each level
 Do I want to generalize to a larger universe than just 

the units in the sample? 

 Decide on the inference model for each level
 Do I want to generalize just to the units in the sample? 
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Specifying Analyses

Know the design
 Generally, Covariate effects should be fixed 

effects

 Treatment effects should also be fixed effects 
unless the design permits the treatment to be 
random such as, a randomized block design. For 
instance, a classroom intervention may vary 
across schools
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Applications to Experimental Design

 We will look in detail at the two most widely used 
experimental designs in large-scale education 
research
 Cluster randomized designs 
 Randomized block designs
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Cluster Randomized Design
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The Cluster Randomized Design
 Clusters are naturally occurring groups (large 

units) within which smaller units are grouped 

 In education, schools are naturally occurring 
clusters. Teachers, classrooms and students are 
grouped within schools (the clusters). School 
districts are larger clusters than schools and 
classrooms are smaller clusters than schools 

 Assignment to groups is made to whole clusters 
(e.g., schools) randomly. Clusters are nested 
within treatment and control conditions 
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The Cluster Randomized Design

 We are typically interested in comparing means of 
two different conditions (a treatment and a control 
group) 

 Assignment to groups is made to whole clusters 
(e.g., schools) randomly. Clusters are nested 
within treatment and control conditions 

 Assign 2m schools with n students in each school 
(typically assume balanced design)

 There are m schools in each treatment condition
 Assign all students in each school to the same 

treatment condition
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The Cluster Randomized Design
 Diagram of the Experiment:
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The Cluster Randomized Design
 Treatment 1 Schools:
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The Cluster Randomized Design
 Treatment 2 Schools:



77

Two-Level CRT Design No Covariates: 
Conceptual Multilevel Model - Level 
Specific Equations

 Level 1 (individual level):

 Level 2 (school level):

 The ICC is:

where        is the total variance and T is the treatment 

( )β γ γ ξ ξ τ= + + 2
0 00 01 0 0           ~ 0,j j j jT N

( )β ε ε σ= + 2
0                         ~ 0,ij j ij ijY N

( )ρ τ σ τ τ σ= + =2 2 2 2 2
T

σ 2
T
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Two-Level CRT Design with Covariates: 
Conceptual Multilevel Model – Level Specific 
Equations

Level 1 (individual level):

 Level 2 (school level):

where X is a level-1 covariate (e.g., student SES), W is a
level-2 covariate (e.g., school size) and T is the treatment.
The first level covariate effect is modeled as fixed in the
second level. Also, the first and second level variances are
now residual variances (subscript A indicates adjustment).
The first level intercept is random at the second level    

( )β γ γ γ ξ ξ τ= + + + 2
0 00 01 02 0 0 ~ 0,j j j j j AT W N

( )β β ε ε σ= + + 2
0 1 ~ 0,ij j j ij ij ij AY X N

1 10jβ γ=
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Two-Level CRT Design: Single Level 
Model with Random Effects

The previous multilevel equations can be written as
single level regression equations (mixed effects models)
with a complicated error term
No covariates: 

Covariates: 
 

γ γ ξ ε= + + +00 01 0ij j j ijY T

γ γ γ γ ξ ε= + + + + +00 01 02 10 0ij j j ij j ijY T W X

Error
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Three-Level CRT Design No Covariates: 
Conceptual Multilevel Model - Level Specific 
Equations   

 Level 1 (individual level):

Level 2 (classroom level):

Level 3 (school level):
 

Two ICCs:
Third level: 
Second level: 

( )π β ξ ξ τ= + 2
0 00 0 0                      ~ 0,jk k jk jk N

( )π ε ε σ= + 2
0                        ~ 0,ijk jk ijk ijkY N

( )ρ ω σ τ ω ω σ= + + =2 2 2 2 2 2
3    (School)T

β γ γ η= + +00 000 001 00k k kT ( )η ω2
00 ~ 0,k N

( )ρ τ σ τ ω τ σ= + + =2 2 2 2 2 2
2    (Classroom)T
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Three-Level CRT Design with Covariates: 
Conceptual Multilevel Model - Level Specific 
Equations   

 Level 1 (individual level):

Level 2 (classroom level):

 
Level 3 (school level):
 

( )π β β ξ ξ τ= + + 2
0 00 01 0 0                      ~ 0,jk k k jk jk jk AZ N

( )π π ε ε σ= + + 2
0 1                        ~ 0,ijk jk jk ijk ijk ijk AY X N

( )β γ γ γ η η ω= + + + 2
00 000 001 002 00 00 ~ 0,k k k k k AT W N

1 10jk kπ β=

01 010kβ γ=

10 100kβ γ=

1 10 100 01 010Covariate effects  and  are fixedjk k kπ β γ β γ= = =
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Three-Level CRT Design with Covariates: 
Conceptual Multilevel Model - Level Specific 
Equations

X is a level-1 covariate (e.g., student SES), Z is a
 level-2 covariate (e.g., class size), W is a level-3 

covariate (e.g., school sector) and T is the treatment. 
The first level covariate effect is modeled as fixed at 
the second and third levels. Similarly, the second level 
covariate is fixed at the third level. All three variances 
are now residual because of covariates (subscript A 
indicates adjustment). The first and second level 
intercepts are random at the second and third levels. 
In cluster designs the treatment is always at the top 
level     
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Three-Level CRT Design: Single Level 
Model with Random Effects

The previous multilevel equations can be written as
single level regression equations (mixed effects
models) with a more complicated error term  
No covariates: 

Covariates: 
 

γ γ η ξ ε= + + + +000 001 00 0ijk k k jk ijkY T

γ γ γ γ γ

η ξ ε

= + + + + +

+ +
000 001 002 010 100

00 0

ijk k k jk ijk

k jk ijk

Y T W Z X

Complicated 
Error
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Standard Errors of Regression Estimates and 
Clustering

 Appropriate analyses of two and three level data 
must take into account the multilevel structure 
(nesting or clustering)

 Otherwise, the standard errors of the regression 
estimates and statistical tests are incorrect

 The standard errors of treatment effect estimates are 
typically smaller when clustering is ignored, 
especially in higher levels (cluster levels)

 This results in a higher value of a t-test and a higher 
probability of rejecting the null hypothesis when it is 
true (committing a Type I error)
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Standard Errors of Regression Estimates 
and Clustering

 There are different ways of adjusting standard 
errors for clustering
 Conduct the analysis using multilevel models (e.g., SAS 

proc MIXED, SPSS linear mixed models, HLM, Mlwin, 
Stata mixed, R lmer) 

 Post hoc corrections:
 Use the design effect: multiply the square root of the design 

effect with the standard error of the regression estimate
 Use clustered standard errors (e.g., Stata) that adjust for 

clustering (typically clustered robust standard errors are 
computed that account for clustering and heteroscedasticity)
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Randomized Block (or 
Multisite) Design
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The Randomized Block Design (RBD)
 We wish to compare the means between a 

treatment and a control group
 Assign randomly n units (e.g., students) to 

treatment or control conditions within blocks (e.g., 
grades, schools)

 Within each block there are 2n level-1 units 
(assume a balanced design)

 The block is treated as a random effect (i.e., the 
between-block variability is taken into account). The 
block is a cluster or sub-cluster and thus cluster 
sampling is assumed at the top level (and the 
middle level in three-level cases)
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Two-Level RBD
 Diagram of the Experiment:
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Two-Level RBD
 Diagram of the Experiment:

 m smaller scale experiments are overall conducted 
(one per block)
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Two-Level RBD: Conceptual 
Multilevel Framework (MLF) – Level 
Specific Equations 
 Without covariates (student i in school j):

 Level 1 (student level):

 Level 2 (school level):

Subscript T indicates treatment. The first level
treatment effect is modeled as random at the second level 

β γ η= +0 00 0j j

0 1ij j j ij ijY Tβ β ε= + + ( )ε σ 2~ 0,ij N

( )η τ 2
0 ~ 0,j N

School random effect

β γ η= +1 10 1j j ( )η τ 2
1 ~ 0,j TN

Treatment by School interaction
(random effect)



91

Two-Level RBD: Single Level Equation 

 The previous two-level model can be expressed 
in a single level equation (mixed effects model) 
as:
 

 

 

γ γ η η ε= + + + +00 10 0 1ij ij j ij j ijY T T

School random effect

Treatment by School interaction
(random effect)

Complicated Error
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Two-Level RBD with Covariates: 
Conceptual MLF - Level Specific 
Equations

Level 1 (individual level):

 Level 2 (school level):

where T is the treatment, X is a level-1 covariate (e.g.,
student SES) and W is a level-2 covariate (e.g., school
size). The first level covariate effect is fixed at the second
level. In block designs the treatment is always below the top level     

β γ γ η

β γ η

β γ

= + +

= +

=

0 00 01 0

1 10 1

2 20

j j j

j j

j

W

0 1 2ij j j ij j ij ijY T Xβ β β ε= + + + ( )ε σ 2~ 0,ij AN

( )
( )

η τ

η τ

2
0

2
1

~ 0,

~ 0,
j A

j T

N

N
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Two-Level RBD with Covariates: 
Single Level Equation

The single level equation (mixed effects model) is:

 
 

γ γ γ γ

η η ε

= + + + +

+ +
00 10 20 01

0 1

ij ij ij j

j ij j ij

Y T X W

T

Complicated error
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Fixed and Random Effects
 Should blocks be fixed or random? 
 Fixed Effects
 If the inference focuses on the blocks (e.g., schools) in the 

sample, then the blocks can be treated as fixed effects (e.g., 
include a set of school dummies in the regression model). In this 
case the two-level model collapses in a single-level regression 
model

 Specifically, a model with one fixed level-1 covariate is

where SC are block fixed effects (e.g., a set of school dummies)
 Random Effects
 If the inference targets a larger population of blocks (e.g., 

schools), then the blocks can be treated as random effects. The 
variance of these random effects is taken into account in the 
estimation procedure. Cluster sampling at the top (second) level is 
assumed 

𝑌𝑌𝑖𝑖 = 𝛾𝛾0 + 𝛾𝛾1𝑇𝑇𝑖𝑖 + 𝛾𝛾2𝑋𝑋𝑖𝑖 + 𝑺𝑺𝑪𝑪𝑗𝑗𝜞𝜞3 + 𝑇𝑇𝑖𝑖𝑺𝑺𝑪𝑪𝑗𝑗𝜞𝜞4 + 𝜀𝜀𝑖𝑖
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Three-Level RBD: Conceptual MLF – 
Level Specific Equations
Treatment is at the first level. Without covariates 

(student i in classroom j in school k)      
    Level 1 (individual level):

 Level 2 (classroom level):

 Level 3 (school level):

Subscript T indicates treatment. The treatment effect
varies across level-2 and level-3 units 
 

( )β β ε ε σ= + + 2
0 1                ~ 0,ijk jk jk ijk ijk ijkY T N

( )
( )

β γ ξ ξ τ

β γ ξ ξ τ

= +

= +

2
0 00 0 0

2
1 10 1 1

                         ~ 0,

                          ~ 0,
jk k jk jk

jk k jk jk T

N

N

( )
( )

γ δ η η ω

γ δ η η ω

= +

= +

2
00 000 00 00

2
10 100 10 10

                         ~ 0,

                         ~ 0,
k k k

k k k T

N

N
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Three-Level RBD – Single Level Equation
 The single level equation (mixed effects model) 

is:
 

 

 

𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛿𝛿000 + 𝛿𝛿100𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 +

𝜉𝜉0𝑗𝑗𝑗𝑗 + 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝜉𝜉1𝑗𝑗𝑗𝑗 + 𝜂𝜂00𝑗𝑗 + 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝜂𝜂10𝑗𝑗 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖

School random effect

Treatment by School interaction
(random effect)

Classroom random effect

Treatment by Classroom interaction
(random effect)

Complicated error
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Three-Level RBD with Covariates: 
Conceptual MLF – Level Specific Equations
Treatment is at the first level, covariates included 

(student i in classroom j in school k) 
 Level 1 (individual level):

Level 2 (classroom level):

 
Level 3 (school level):
 

( )β β β ε ε σ= + + + 2
0 1 2              ~ 0,ijk jk jk ijk jk ijk ijk ijk AY T X N

( )
( )

β γ γ ξ ξ τ

β γ ξ ξ τ

β γ

= + +

= +

=

2
0 00 01 0 0

2
1 10 1 1

2 20

                         ~ 0,

                                       ~ 0,
jk k k jk jk jk A

jk k jk jk T

jk k

Z N

N

( )
( )

γ δ δ η η ω

γ δ η η ω

γ δ
γ δ

= + +

= +

=

=

2
00 000 001 00 00

2
10 100 10 10

01 010

20 200

                         ~ 0,

                                       ~ 0,
k k k k A

k k k T

k

k

W N

N
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Three-Level RBD with Covariates: 
Conceptual MLF – Level Specific 
Equations

X is a level-1 covariate (e.g., student SES), Z is a
level-2 covariate (e.g., class size), W is a level-3 covariate (e.g.,
school sector) and T is the treatment. The first level covariate
effect is modeled as fixed at the second and third levels.
Similarly, the second level covariate is fixed at the third level.
The treatment effect varies across level-2 and level-3 units. In
block designs the treatment is always below the top level   
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Three-Level RBD – Single Level Equation

 The single level equation (mixed effects model) is:
 

 

 

𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛿𝛿000 + 𝛿𝛿100𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛿𝛿200𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛿𝛿010𝑍𝑍𝑗𝑗𝑗𝑗 + 𝛿𝛿001𝑊𝑊𝑘𝑘 +

𝜉𝜉0𝑗𝑗𝑗𝑗 + 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝜉𝜉1𝑗𝑗𝑗𝑗 + 𝜂𝜂00𝑗𝑗 + 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝜂𝜂10𝑗𝑗 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖

School random effect

Treatment by School interaction
(random effect)

Classroom random effect

Treatment by Classroom interaction
(random effect)

Complicated error
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Fixed Effects
 Fixed Effects
 If the inference focuses on the blocks in the sample, then the 

blocks are treated as fixed effects (e.g., a set of school dummies is 
included in the model at the second level). The third level can be 
eliminated, and the model represents then a two-level RBD with 
blocks included as covariates at the second level 

 The model becomes:

where SC represent block fixed effects (e.g., a set of school 
dummies)

𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛿𝛿0 + 𝛿𝛿1𝑇𝑇𝑖𝑖𝑖𝑖 + 𝛿𝛿2𝑋𝑋𝑖𝑖𝑖𝑖 + 𝛿𝛿3𝑍𝑍𝑗𝑗 + 𝑺𝑺𝑪𝑪𝑗𝑗𝜟𝜟4 + 𝑇𝑇𝑖𝑖𝑖𝑖𝑺𝑺𝑪𝑪𝐣𝐣𝜟𝜟5 +
𝜉𝜉0𝑗𝑗 + 𝑇𝑇𝑖𝑖𝑖𝑖𝜉𝜉1𝑗𝑗 + 𝜀𝜀𝑖𝑖𝑖𝑖
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Three-Level RBD: Conceptual MLF – 
Level Specific Equations
Treatment is at the second level. No Covariates

 Level 1 (individual level):
 
    Level 2 (classroom level):

 Level 3 (school level):

    Subscript T indicates treatment. The treatment effect 
varies across level-3 units

 

( )β ε ε σ= + 2
0                            ~ 0,ijk jk ijk ijkY N

( )β γ γ ξ ξ τ= + + 2
0 00 01 0 0            ~ 0,jk k k jk jk jkT N

( )
( )

γ δ η η ω

γ δ η η ω

= +

= +

2
00 000 00 00

2
01 010 10 10

                         ~ 0,

                         ~ 0,
k k k

k k k T

N

N



102

Three-Level RBD: Single Level 
Equation
 Without covariates the mixed model is:

 

 

 

𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛿𝛿000 + 𝛿𝛿100𝑇𝑇𝑗𝑗𝑗𝑗 +

𝜉𝜉0𝑗𝑗𝑗𝑗 + 𝜂𝜂00𝑗𝑗 + 𝑇𝑇𝑗𝑗𝑗𝑗𝜂𝜂10𝑗𝑗 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖

School random effect Treatment by School interaction
(random effect)

Classroom random effect

Complicated error
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Three-Level RBD: Conceptual MLF – 
Level Specific Equations

Treatment is at the second level (covariates included)
    Level 1 (individual level):

   Level 2 (classroom level):

   Level 3 (school level):
 

( )β β ε ε σ= + + 2
0 1                           ~ 0,      ijk jk jk ijk ijk ijk AY X N

( )β γ γ γ ξ ξ τ

β γ

= + + +

=

2
0 00 01 02 0 0

1 10

            ~ 0,

                                               
jk k k jk k jk jk jk A

jk k

T Z N

( )
( )

γ δ δ η η ω

γ δ η η ω

γ δ
γ δ

= + +

= +

=

=

2
00 000 001 00 00

2
01 010 01 01

02 020

10 100

                         ~ 0,

                                       ~ 0,
k k k k A

k k k T

k

k

W N

N
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Three-Level RBD with Covariates: 
Conceptual MLF – Level Specific 
Equations

X is a level-1 covariate (e.g., student SES), Z is a
level-2 covariate (e.g., class size), W is a level-3 covariate (e.g.,
school sector) and T is the treatment. The first level covariate
effect is modeled as fixed at the second and third levels.
Similarly, the second level covariate is fixed at the third level.
The treatment effect varies across level-3 units. In
block designs the treatment is always below the top level     
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Three-Level RBD: Single Level 
Equation
 With covariates the mixed model is:

 

 

 

School random effect
Treatment by School interaction
(random effect)

Classroom random effect

𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛿𝛿000 + 𝛿𝛿010𝑇𝑇𝑗𝑗𝑗𝑗 + 𝛿𝛿100𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 +
𝛿𝛿020𝑍𝑍𝑗𝑗𝑗𝑗 + 𝛿𝛿001𝑊𝑊𝑘𝑘 +

𝜉𝜉0𝑗𝑗𝑗𝑗 + 𝜂𝜂00𝑘𝑘 + 𝑇𝑇𝑗𝑗𝑗𝑗𝜂𝜂01𝑘𝑘 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 
Complicated error
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Fixed Effects
 Fixed Effects
 If the inference focuses on the blocks in the sample, 

then the blocks are treated as fixed effects (e.g., a set 
of school dummies is included in the model at the 
second level). The third level can be eliminated, and 
the model represents then a two-level cluster design 
with blocks included as covariates at the second level 

 The model becomes:

where SC represent block fixed effects (e.g., a set of 
school dummies)

𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛿𝛿0 + 𝛿𝛿1𝑇𝑇𝑗𝑗 + 𝛿𝛿2𝑋𝑋𝑖𝑖𝑖𝑖 + 𝛿𝛿3𝑍𝑍𝑗𝑗 +
𝑺𝑺𝑪𝑪𝑗𝑗𝜟𝜟4 + 𝑇𝑇𝑗𝑗𝑺𝑺𝑪𝑪𝑗𝑗𝜟𝜟5 + 𝜉𝜉0𝑗𝑗 + 𝜀𝜀𝑖𝑖𝑖𝑖 
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Centering
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Centering

 Centering is a transformation applied typically to 
the independent variables

 In simple random sample designs, a variable is 
centered by subtracting the mean from each 
value

 The mean of the new (centered) variable is zero
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Centering

 Centering changes the value and the meaning of the 
intercept. In simple regression with a centered 
predictor the intercept is the mean of the outcome

 Centering also changes the standard error of the 
intercept

 Centering does not change the value or the 
meaning of the regression coefficient

 Centering does not change the standard error of the 
regression coefficient
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Centering: Two-Level Case
 In two-level designs (e.g., students nested within 

schools), there are three kinds of centering:
 Grand-mean centering of a level-1 (student) predictor (using the 

overall mean of the predictor)
 Group-mean centering of a level-1 (student) predictor (using the 

level-2 unit means of the predictor)
 Grand-mean centering of a level-2 (school) predictor (using the 

overall mean of the predictor) 
 Grand mean centering means subtracting the grand 

(overall) mean

 Group mean centering means subtracting the group or 
level-2 unit mean

 These two centering methods affect the interpretation of 
the cluster specific intercept
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Grand-Mean Centering

 Grand-mean centering changes the meaning of 
the intercept in the jth cluster (school)

 The intercept is now the mean outcome in the 
cluster (school) minus an adjustment due to the 
student predictors

 With Grand-Mean Centering: 
 Level-1 predictors can explain the level-2 variance 
 Level-1 predictors are not independent of the level-2 

predictors
 Centering changes the precision of the 

intercept only (as in regression)
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Group-Mean Centering
 Group-mean centering changes the meaning of the 

intercept in the ith cluster (school)
 The cluster intercept is now the mean outcome in the 

cluster (school) not adjusted by student predictors
 With Group-Mean Centering: 
 Level-1 predictors cannot explain the level-2 variance (only 

the level-1 variance) 
 Level-1 predictors are independent of the level-2 predictors 

(no conditional effects across levels) 
 To reduce the level-2 variance one can create and use 

aggregate variables (of level-1 variables) at the second 
level 

 Level-1 effects are adjusted for level-2 (between cluster) 
differences (e.g., school effects)

 Centering changes the precision of all estimates



113

Centering 

 Group-mean centering of level-1 predictors can 
be used in block designs to take into account 
potential differences among blocks (e.g., 
differences between schools or school effects)

 No centering or grand-mean centering can be 
used in cluster designs 

 As in typical regression centering predictors is 
not a requirement
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Effect Sizes
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Effect Sizes
 Effect sizes can be defined in more than one way in 

multilevel designs
 A typical effect size is a standardized mean 

difference, which is relevant to experiments with a 
treatment and a control group

 The numerator of the effect size is naturally the mean 
difference 

 The question is which standard deviation should be 
used in the denominator to standardize the mean 
difference 

 One standardization procedure is to use the total 
standard deviation of the outcome
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Effect Sizes
 In two-level cluster randomized designs, this 

leads to:

 In three-level cluster randomized designs, this 
leads to:

01
2 2
S W

γ
δ

σ σ
=

+

Mean difference

Total standard deviation

001
2 2 2
S C W

γ
δ

σ σ σ
=

+ +

Mean difference

Total standard deviation
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Effect Sizes
 In two-level randomized block designs, one could 

use the treatment effect variance. For example,

 Similarly, in three-level randomized block 
designs where assignment is at the second level, 
the effect size can be defined as

𝛿𝛿 =
𝛾𝛾10

𝜎𝜎𝑇𝑇×𝑆𝑆
2 + 𝜎𝜎𝑊𝑊2

𝛿𝛿 =
𝛾𝛾010

𝜎𝜎𝑇𝑇×𝑆𝑆
2 + 𝜎𝜎𝐶𝐶2 + 𝜎𝜎𝑊𝑊2
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