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Experimental Design

“Experimental Design” encompasses:
1. Strategies for organizing data collection
2. Knowledge of data generating processes

3. Data analysis procedures linked to those data collection
strategies

Suppose a researcher is interested in determining the effect of a
treatment (e.g., school intervention) on an outcome (e.g., student
achievement).

Typically, two groups are created: one treatment and one control
group

Typically, the designs are balanced (i.e., equal sample sizes in
both treatment and groups)

The effect is the change in the outcome of interest (e.g., change
in achievement from pre- to post-test) because of the
intervention/treatment implemented. This change in the outcome
is designed to have a beneficial effect (e.g., increase
achievement)




Experimental Design: Analysis

o Analysis of Variance (ANOVA) is a traditional analysis
procedure used to analyze data from randomized
experiments including Randomized Control Trials (RCTs)

o Other appropriate analytic procedures include:
Multiple linear regression

Analysis of Covariance

Multilevel or hierarchical linear models

Statistical estimation applied to aggregate data
(classroom or school level data)

o All these procedures estimate the mean difference in an
outcome between treatment and control groups

o Analytic procedures should match research hypotheses,
the research design, and a priori power analysis



Why Do We Need Experimental

Design?
o Aim to identify treatment effects in the presence of variation
(differences) of units and/or responses

o Variation exists because:
e Units (students, teachers, & schools) are not identical
e Units respond in different ways to treatments

o We need experimental design to control this variability (i.e.,
equate treatment and control groups on average at the
beginning of the study) and then identify treatment effects on
outcomes of interest

o ltis viewed as the strongest design to identify what causes a
change in an outcome of interest when threats to the internal
validity of the study are minimized and randomization is kept
intact

4




History

o The idea of controlling variability by creating similar or
equivalent groups through a research design has a long
history

o In 1753 Sir James Lind’s published the treatise of the
scurvy describing his study where 12 scurvy patients
(sailors who spent much time in the sea) were assigned
to six similar groups that received different treatments
(proposed remedies)

o One of the treatments involved consumption of oranges
and lemons (which are rich in vitamin C). People in that
group showed dramatic improvement compared to the
other groups




History

o In the late 1890’s, Fibiger examined the effectiveness
of diphtheria antitoxin in treating diphtheria patients
and assigned patients to a treatment (received
antitoxin) or a control group (standard treatment)
according to the day they were admitted (i.e., every
other day patients were assigned to different
groups)

o In the 1930s, Amberson et al. (1931) used random
assignment via a coin-toss to create equivalent
groups to examine the effects of sanocrysin on
pulmonary tuberculosis



History

o The first modern randomized clinical trial in
medicine is considered the trial of streptomycin for
treating tuberculosis

o It was conducted by the British Medical Research
Council in 1948

o Patients were randomly assigned to a group that
took streptomycin and a group that did not




History

o Another renowned RCT was the polio vaccine
field trial conducted in the U.S. in 1954

o Children ages 6-9 were assigned to a treatment
group that received the polio vaccine or a control
group that received a placebo




History
o Studies in crop variation | — VI (1921 — 1929)

o In 1919 a statistician named Fisher was hired at
Rothamsted agricultural station

o Rothamsted agricultural station had a lot of
observational data on crop yields and hoped a
statistician could analyze it to find potential
effects of various treatments




History

o In a series of studies, within 8 years, Fisher
invented the basic principles of experimental
design and analysis of variance and covariance

o He also invented control of variation by random
assignment (i.e., laid out the basic concept of
randomization)

o RCTs are extensions of Fisher’'s pioneering work
on experimental design




History

o In the field of education two eminent books introduced Fisher’s
methodological foundations of experimental design and analysis

o In 1940 Lindquist published his book about Stafistical Methods in
Educational Research that discussed random allocation of units and
principles of experimental design and analyses

o In the 1960s, Campbell and Stanley (1966) outlined
methodologies for designing experiments and quasi-experiments as

well as analyzing appropriately data from experiments



History

o In the field of education, a noteworthy large-scale RCT was

conducted in the mid-1980s in the state of Tennessee, known as the
Tennessee class size experiment or Project STAR (Student Teacher
Achievement Ratio)

o A four-year experiment that followed a cohort of kindergarten
students in 79 schools through third grade. In the first year of the
study, within each school, kindergarten students and teachers were
randomly assigned to either a small class, a regular size class, or a

regular size class with a full-time teacher assistant



History

o Since 2002 mainly due to the emphasis IES placed
on rigorous research designs in education, and the
availablility of funding streams, there has been an
abundance of RCTs

o |IES has funded more than 350 RCTs since its

Inception



Randomized Experiment

o Experiment: deliberate interruption of an ongoing
process to identify the effects of that interruption

o Randomized experiment: experiments that involve
the creation of two or more groups, where participants

are assigned randomly to these groups



Randomized Experiment T

o Random assignment is a procedure that assigns units to treatment and control
conditions based only on chance, where each unit has a nonzero probability of
being assigned to a condition. Randomization is a key process for causal
inference

o This random process of assignment to groups uses for example the toss of a
fair coin or the table of random numbers or computer generated random numbers
and assignment

o Because allocation to treatment and control groups is based solely on the luck
of the draw the treatment and control groups are on average equivalent on all

known and unknown variables at the beginning of the study (the baseline)



Randomized Experiment

o Because or randomization, the treatment and control groups
are equivalent on average before the treatment starts and
therefore we can compute the average outcome score of all
inidividuals in the treatment group and then the average outcome
score of all individuals in the control group and finally compute
the mean difference. This is an average treatment effect across

all individuals in the treatment and control groups



Principles of Experimental Design

o Objective: Control variability and identify
systematic effects of treatments on outcomes

= Create sample groups that are on average
equivalent at the beginning of the experiment

o Measures of traits are similar across groups

o Groups would have the same response if given
the same treatment.

o Methods to achieve this goal include:
1. Random Assignment = <«— ‘1w epeinens

2. Matching —

Quasi-experiments

Observational studies

3. Statistical Adjustment
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Random Assignment
Controls for the effects of all characteristics:

e oObservables or non-observables

e known or unknown

= Equates treatment and control groups on average on all
characteristics at the baseline

o Differences in outcomes after the treatment has been applied can
be attributed to the treatment effect and not to preexisting
differences between the groups (causal inference)

o Each unit (e.g., student, classroom, school) is assigned to a
treatment or a control condition by chance (a random allocation
mechanism)

o The treatment and control conditions are then alike. In particular,
treatment and control groups are equivalent on average at the
beginning of the study, and changes in outcomes are due to the
treatment only. Reasonably large numbers are needed for random
allocation to groups (works best in the long run)
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Random Assignment

o It's viewed as the gold standard in clinical research. The
last 20 years, arguably, it is considered to be the gold
standard in education research

o Currently randomized experiments are used frequently in
education

= Strongest design for causal inference

o Notice that the unbiased assignment of units to treatment
and control groups involves first randomization (the
genesis of the unbiased random sequence) and second
the unbiased (unaltered) implementation of
randomization. The second component is very crucial in
conducting infallible experiments
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Random Assignment

o When using random assignment, we do not have to
know a lot to use it effectively

o We simply conduct random assignment of sample
units to treatment and control conditions. That is, the
randomization aspect of the study is straightforward.
The implementation of randomization needs careful
monitoring of course to ensure the experiment is not
compromised or broken

o It is good practice to measure important relevant
covariates at the baseline of the experiment (e.g., in
education it is crucial to measure prior achievement
and SES) and include them in the analysis to achieve
more precise estimation
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Compliance and Non-Compliance

o Compliers are individuals who will take the treatment
If assigned to the intervention group and will not take
the treatment if assigned to the control group (i.e.,
participants that comply with the assignment dictated
by randomization)

o There are three categories of non-compliers: (a) units
that, regardless of random assignment, will not take
the treatment (never takers); (b) units that, regardless
of random assignment, will always take the treatment
(always takers); and (c) units who defy random
assignment and do the opposite of what their
assignment suggests (defiers)
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Compliance and Non-Compliance

o When individuals are not complying with
randomization results in systematic ways bias may be
introduced in the treatment effect estimate. For
example, suppose some students assigned randomly
to the control group deliberately switch to the
treatment group to receive the treatment (also called
crossing over from one group to another).
Alternatively, suppose some students in the treatment
group intentionally decide not to take the treatment
and switch to the control condition. Whenever
switching between treatment and control groups is
non-random, the risk of treatment effect bias
Increases
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Intention to Treat

o One analytic approach that can serve as a bulwark to bias
due to non-compliance is the intention to treat analysis
(ITT). The treatment effect is estimated according to the
individuals’ initial/original assignment to treatment or
control groups through randomization, regardless of
whether crossing over from one group to another took
place (i.e., regardless of hon-compliance)

o The rationale of the ITT analysis is that all participants who
were part of the original sample of the RCT and were
assigned via some random allocation mechanism to a
treatment or a control group are included in the statistical
analysis of post-test outcomes regardless of whether they
actually complied with their initial random assignment or
not
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Intention to Treat

o The ITT analysis does not produce the treatment effect for
compliers; it produces the treatment effect of the treatment
offered through randomization. Intuitively, as non-compliance
rates increase the ITT effect deviates from the anticipated
treatment effect for compliers
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Treatment on the Treated

o Analyses that examine the effect of “treatment on the treated”
attempt to take into account whether, and often how much, of
the treatment have participants received. This is about the

effect of treatment actually received by participants (not
offered)

o This effect could be biased because of selection. That is, if
iIndividuals who actually receive the treatment are
systematically different (higher motivation, ability, SES, etc.)
than those who did not receive it, the treatment effect is likely
biased. Even controlling for important observed variables may
not completely alleviate the selection issue (if unobservables
are different between individuals who received and did not
receive the treatment)
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Instrumental Variables

o Instrumental Variables (IV) Estimation can be used to facilitate
causal inference in this case

o Specifically, the IV procedure estimates the treatment effect for
compliers. In experiments, a strong instrument is the initial random
assignment to treatment or control groups. A two-stage approach
can be applied to estimate the IV treatment effect for compliers. In
the first stage, the binary variable that indicates whether a
participant actually received the treatment (or not) is regressed on
the binary variable of initial random assignment (randomization
results)

o Covariates can potentially be included in the first-stage regression.
The regression estimate of the initial random assignment binary
variable in the first-stage regression captures the association
between initial random assignment and actual receipt of the
treatment and represents the degree of compliance
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Instrumental Variables

o The first stage keeps the component of the binary variable that
represents treatment actually received that is linked with the
original random assignment process, and purges all non-
compliance processes. The fitted/predicted values of the first-
stage regression are used now as the treatment variable that
predicts a dependent variable of interest (e.g., math
achievement) in the second-stage outcome variable regression.
The second stage regression may also include relevant
covariates. This |V analysis offers a causal estimate of the
treatment effect for compliers
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Matching

o Known sources of variation may be eliminated by matching
(i.e., matching is conducted using measured/observed
relevant variables or covariates)

o For example, eliminate district, school, or classroom effects
before comparing students, that is, compare students in
similar classrooms, schools or districts

o Matching can take place in the design phase of a study or in
the data analysis stage. For example, propensity score
methods is one post hoc statistical method that creates similar
groups using observed covariates to estimate a treatment
effect. Matching including propensity score methods is based
solely on measured, observed sources of variation

28



Matching

o Matching methods including propensity score methods “mimic”
random assignment (i.e., aim to balance baseline variables in
treatment and control groups). Under the assumption that all
relevant baseline covariates have been measured and used
and there is no omitted variable bias, matching could be as
good as random assignment. However, that is a strong
assumption, the best-case scenario. In principle, it is always
possible that an unmeasured variable could impact causal
inference in matching
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Matching

e Matching can only be performed on known and
observable characteristics that have been measured

e Perfect matching is not always possible

e |t is critical to measure the right/relevant variables
that will minimize variability and create more
homogeneous groups (e.g., prior achievement, SES)

e May limit generalizability by removing possibly
iInformative variation (e.g., differences in teachers)

e May reduce the sample size (because the variation is

reduced) needed for the study (i.e., improves
statistical power)
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Statistical Adjustment T}
ndo

o A form of post-hoc pseudo-matching that also mimics ra
assignment

o Uses statistical associations between outcomes and
controls/covariates to simulate matching

o Reduces variation of outcomes in regression and ANCOVA

o Controlling for covariates increases the precision of the
regression estimates (i.e., smaller standard errors)

o Statistical control is possible using known and observable
characteristics only

o Does not necessarily address all preexisting differences prior
to assignment to treatment or control conditions. Ideally all
relevant variables should be measured and included in the
model. If the model is specified correctly, the treatment effect
could be unbiased. But that is a strong assumption
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Principles of Experimental Design

o When using random assignment, we do not have to
know a lot to use it effectively

= Simply conduct random assignment of sample
units to treatment and control conditions

o That is, the randomization aspect of the study is
straightforward. The implementation of
randomization needs careful monitoring

o It is good practice to measure important relevant
covariates at the baseline of the experiment (e.g.,
prior achievement, SES) and include them in the
analysis to achieve more precise estimation
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Principles of Experimental Design

o When using matching or statistical control, we have
to think carefully, ahead of time, about which
variables would be important/relevant to measure
and control for in the analyses to circumvent
potential omitted variable bias

o Some thorough thinking, when designing a quasi-
experiment or an observational study, is necessary
In order to measure all relevant variables and
iInclude them in the analyses to produce equivalent
groups and reduce bias
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Principles of Experimental Design

o Random assignment per se may not be as efficient as
matching or statistical control (i.e., may require larger
sample sizes for the same power) because it does not
reduce, it controls variability

o However, if covariates have been measured, they
could/should be used in the power and the statistical
analyses

o Including covariates in a regression model would
reduce variability in the outcome and result in a more
precise estimation (higher statistical power of the test)
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Independent Variables

o Categorical independent variables are also called factors.
o The categories of factors are called levels

o Some independent variables can be manipulated, others
cannot:

e Treatments are independent variables that can be
manipulated by the researchers and can cause an event
we wish to measure

e Blocks (e.g., classrooms, schools) and covariates (e.g.,
gender, race) are independent variables that cannot be
manipulated by the researchers

o Units can be randomly assigned to treatment levels, but not
to blocks. For example, students within a school (the block)
can be assigned randomly to a treatment or a control
condition
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Blocks

o Blocks are classes created for the purposes of
forming homogeneous groups

o Blocks can be naturally formed groups (e.g.,
regions, states, cities, school districts, schools,
grades, classrooms)

o Blocks can be known variables/factors (e.g., age,
ability, health status)

o Blocks reduce variability (similar to matching and
statistical control)
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Blocks

o We can assign randomly schools to treatment
conditions within school districts (the blocks)

o Or we can assign randomly students or
classrooms to treatment conditions within schools
(the blocks)

o Or individuals with similar age can be grouped in
homogeneous blocks and then random
assignment to conditions may take place

o Block effects should be taken into account in a
priori power computations and in statistical
analyses. Blocks could be random or fixed effects
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Basic Ideas of Design: Nesting &
Crossing

o Example: schools are randomly assigned to
treatment conditions (treatment is at a higher
level than schools)

= Schools are then nested within each
treatment condition

Schools
1,2, ....m m+1,...,2m

Treatments
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Basic Ideas of Design: Nesting &

Crossing

o Example: classrooms or students are randomly
assigned to treatment or control conditions within
schools (treatment is at a lower level than
schools/blocks)

Schools
1 2 m
T1 T2 T1
T2 T1 T2

=~ treatments are then crossed with schools
(blocks) i




Three Basic Designs

o Completely Randomized Design

e Treatments are randomly assigned to individuals (e.g.,
students). Nesting is not considered

o Cluster or Group Randomized Design
e Also called a Hierarchical Design

e For example, schools are assigned randomly to treatment or
control groups and the same treatment is assigned to all units
within the school (classrooms and students)

o Randomized Block Design

e For example, students are assigned randomly to treatment and
control conditions within schools or grades (the blocks)

e Larger units such as classrooms can also be assigned
randomly to treatments within schools or grades (the blocks)

e This design is also known as a multisite design where blocks
are the sites
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Completely Randomized Design

o Individuals are randomly assigned to one of two
treatments:

Treatment Control
Individual 1 Individual 1
Individual 2 Individual 2

Individual n Individual n




Cluster or Group Randomized Design

o Schools are randomly assigned to one of two
treatments, all students within schools receive
the treatment:

Treatment Control
School 1 School m School m+1 School 2m
Individual 1 Individual 1 Individual 1 Individual 1
Individual 2 Individual 2 Individual 2 Individual 2
Individual n Individual n Individual n Individual n
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Randomized Block Design

o Individuals are randomly assigned to one of two
treatments within their school (the block or site):

School 1 ... Schoolm
Individual 1 Individual 1
Treatment 1
______________________________ Individual n Individual n
Individual n +1 Individual n+1

Treatment 2

Individual 2n Individual 2n




Randomization Procedures

o Could use a table of random numbers. Be sure to
pick an arbitrary starting point each time

o Could use random number generators in statistical
software packages. Be sure the seed value varies
each time

o Lottery (random picks)

o Flipping a fair coin




Post Hoc Test to Check Randomization

o It is common practice to check whether random
assignment was successful using observed variables
at baseline (i.e., check baseline equivalence of
measured variables)

o This is particularly important when the overall attrition
and the attrition in treatment or control groups (i.e.,
differential attrition) is not low

o This is a post hoc procedure that can identify variables
where random assignment did not work as expected
by design (i.e., the means of baseline covariates in the
treatment are different than those in the control group)




Post Hoc Test to Check Randomization

o This procedure cannot discredit randomization per se (e.g., a
mean difference may be observed by chance). However,
when there is systematic evidence about mean differences,
this may indicate that the implementation of random
assignment may have been flawed

o Mean differences should not be significant (but that depends
on the sample size). More importantly, the magnitude of the
mean difference should not exceed 0.25 standard deviations
(according to WWC)

o Regression or ANCOVA can be used to check imbalance in
baseline covariates. The model should include all relevant
measured covariates identified and used in the outcome
variables regressions



Post Hoc Test to Check Randomization

o What Works Clearinghouse (WWC) offers some useful
guidelines about baseline equivalence of observed
variables between treatment and control groups

o WWC offers some useful suggestions about attrition as
well
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A Useful Framework for Clustering:
Sampling Models




Sampling Models

o They are closely linked with the research design
and the statistical analysis stages

o Example: Which sample will provide a more
precise mean estimate?
e Sample A, with N =1,000
e Sample B, with N = 3,000

o It is sample B because if the total population
variance is o, then the variance of the sample
mean is o,7/N (which indicates smaller variances
of means In larger samples)




Sampling Models in Educational Research

o Simple random samples are rare in large-scale field
research in education

o Education populations have nested structures
(multiple levels, units of different sizes — students,
classes, schools, districts)

e Students at the first level, classrooms at the second level,
schools at the third level, school districts at the fourth level
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Sampling Models in Educational Research

O Survey research in education often exploits this multilevel
structure, for example by first sampling schools and then
students within schools

o This sampling strategy is called multi-stage (multilevel)
cluster sampling in survey research

o Example: Clusters such as schools are first sampled and
then individuals such as students within clusters are
sampled

= Two-stage (two-level) cluster sample

o Example: Schools are first sampled, then classrooms
within schools, then students within classrooms

& Three-stage (three-level) cluster sample
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Variance of the Mean of Clustered Samples;
Two Levels

o Suppose we have n level-1 units within each level-2
unit and m level-2 units overall

o Assume a sample size N = mn and a total
population variance o? defined as

G; =0’ +71°

where 1% = Level-2 variance, ¢? = Level-1
variance

o If the sampling strategy had been simple (e.g.,

simple random sampling of students across (62)
schools) the variance of the mean would be:

mn
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Variance of the Mean of Clustered Sample:
Two Levels

o When cluster sampling is also involved however,
the variance of the mean is

2 2 2 2
r 0 O +NnT

m mn mn
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Variance of the Mean of Clustered Sample:

Two Levels

o The intraclass correlation coefficient (ICC), p,
defined as the proportion of the second level variance
to the total variance represents clustering

o If we write p = ?/A0” + 7°), the variance of the mean
becomes:

(Uzmyz)[(l—p)W]: (Uzmt:z)[“("—l)/)]

o where [1 + (n — 1),0} Is called the design effect (it
inflates the variance by a number greater than 1 when

o p # () and captures clustering
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Variance of the Mean of Clustered Sample:
Two Levels

o Specifically:
_ Variance of the mean of Desian effect
Total variance a simple random sample :
o+ (ol +r2)

qﬂ{gf+ A=
Total sample size

2
20r 981 4 (n - 1yl

[H ]
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Variance of the Mean of Clustered Sample:
Three Levels

O Suppose now we have n students (level-1 units)
in p classes (level-2 units) in each of m schools
(level-3 units)

o Assume a sample size N = mpn, and a total
population variance 07% =% + 1% + w*
where o2, 2 and w? are the first, second and
third level variances respectively

If the sampling strategy had been simple (e.g.,
simple random sampling of students across
classrooms and schools) then the variance of the
mean would be: (gﬁ)

mpn
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Variance of the Mean of Clustered Sample:
Three Levels

o When cluster sampling is also involved however in
the first and second stages of sampling (e.g.,
cluster sampling of schools and then cluster
sampling of classrooms) two ICCs, p; (third or
school level) and p, (second or classroom level)
can be defined to capture clustering at both levels

o The second level ICC is defined as
P, = 1?/(0% + 17 + W?)

o The third level ICC is defined as
P53 = W (0% + 1°+ W?)
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Variance of the Mean of Clustered Sample:
Three Levels

o The variance of the mean is now:
2
O
I(n—l;z[ﬂ(n ~1)p, +(pn-1)p, |

= The three-level design effect is:

A+(n=1)p, +(pn-1)p, |

and captures clustering at the second and third levels
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Design Effect

o In two-stage sampling the design effect depends on
n and the ICC. When both are small the design
effect should be close to one. When both are large
the design effect could be much larger than one
(e.g., 5, 10). In practice the square root of the
design effect can be used to correct standard errors
of regression estimates produced from typical
regression models (when cluster sampling is
assumed). Specifically, one can multiply the square
root of the design effect with the standard error of
the regression estimate produced from a typical
regression model
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Design Effect

o In three-stage sampling the design effect
depends on n, p and the ICC’s. When n, p and
the ICC’s are small the design effect should be
close to one. When n, p and the ICC’s are large
the design effect could be much larger than one.
Again, to correct the standard errors for cluster
sampling at two levels (classes, schools), one
can multiply the square root of the design effect
with the standard error of the regression estimate
produced from a typical regression model
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The ICC

o The ICC is defined as a variance ratio. It is the
proportion of total variance in the dependent
variable that is attributable to clusters (the larger
units)

o For example, suppose students are nested within
schools and the outcome variable is at the
student level (achievement scores). Then, the
|ICC is the proportion of the variance in
achievement scores attributed to schools. That
s, the ICC is the ratio of the between-cluster
variance to the total variance in the dependent
variable
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The ICC

o If the total variance is 1 and the between cluster variance
is 0.2, the ICC = 0.2. This means 20% of the total
variance in the outcome variable is attributed to the
variance between clusters and 80% of the total variance
Is attributed to the variance within clusters. The ICC
ranges from O to 1. Zero indicates no between cluster
variance (no clustering) and 1 indicates no within cluster
variance. Increases in ICC indicate differences between
clusters (more heterogeneity between clusters and more
homogeneity within clusters). Smaller ICCs indicate more
homogeneity between clusters (reduced differences
between clusters) and more heterogeneity within clusters
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Variance of the Mean of Clustered Sample

o The sampling model used dictates the variance
structure and estimation

o Variance impacts:

e Precision of the treatment effect estimates (standard
errors)

e Statistical power (inverse relationship)
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Nesting in Multilevel Models

O Nesting is a similar notion to clustering. That is, a
related useful framework capitalizes on data
dependencies because of the nesting of lower-level
units within higher-level units

o For example, students grouped in the same
classroom are more alike than students grouped in
a different classroom. It is possible that the
outcomes of students in the same classroom covary
or are correlated to some degree and this data
dependency (covariance or correlation) should be
taken into account when estimating the variance of
the mean
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Inferential Population and Inference Models

o The inference model has implications for
analyses and therefore for the design of
experiments

o Question to consider: Do we make inferences to
the schools in this sample or to a larger
population of schools?

e Inferences to the sampled schools or classes in the
sample are called conditional inferences

e Inferences to a larger population of schools or
classes are called unconditional inferences

= Bottom line: The inference in conditional is different
than that in unconditional models
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Inferential Population and Inference Models

o In a conditional inference, we are estimating the
mean treatment effect in the observed schools in
the sample

o In an unconditional inferences, we are estimating
the mean treatment effect in the population of
schools from which the observed schools were
sampled

o In both cases, a mean treatment effect is
estimated, but they are different parameters with
their own respective variances
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Fixed and Random Effects

o Fixed Effects

e The levels of a factor in a study constitute the entire
inference population

e [he inference model is conditional

=~ The factor is called fixed, and its effects are called
fixed effects

o Random Effects
e The levels of a factor in a study are sampled
e The inference model is unconditional
= The factor is called random, and its effects are
called random effects
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Specifying Analyses

Know the inference model

o Think through the levels of the design that will be
iIncluded in the analysis

o Decide on the inference model for each level

= Do | want to generalize to a larger universe than just
the units in the sample?

o Decide on the inference model for each level
= Do | want to generalize just to the units in the sample?
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Specifying Analyses

Know the design

o Generally, Covariate effects should be fixed
effects

o Treatment effects should also be fixed effects
unless the design permits the treatment to be
random such as, a randomized block design. For
iInstance, a classroom intervention may vary
across schools

69




Applications to Experimental Design

o We will look in detall at the two most widely used
experimental designs in large-scale education
research

e Cluster randomized designs
e Randomized block designs
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Cluster Randomized Design




The Cluster Randomized Design

o Clusters are naturally occurring groups (large
units) within which smaller units are grouped

o In education, schools are naturally occurring
clusters. Teachers, classrooms and students are
grouped within schools (the clusters). School
districts are larger clusters than schools and
classrooms are smaller clusters than schools

o Assignment to groups is made to whole clusters
(e.g., schools) randomly. Clusters are nested
within treatment and control conditions
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The Cluster Randomized Design

o We are typically interested in comparing means of
two different conditions (a treatment and a control

group)

o Assignment to groups is made to whole clusters
(e.g., schools) randomly. Clusters are nested
within treatment and control conditions

o Assign 2m schools with n students in each school
(typically assume balanced design)

o There are m schools in each treatment condition

o Assign all students in each school to the same
treatment condition
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The Cluster Randomized Design
o Diagram of the Experiment:

Schools

Treatment 1 2 m m—+1 m+2 2m
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The Cluster Randomized Design
o Treatment 1 Schools:

Schools

Treatment 1 2 m m+1  m+2 2m
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The Cluster Randomized Design
o Treatment 2 Schools:

Schools

Treatment 1 2 m m—+1 m+2 2m
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Two-Level CRT Design No Covariates:
Conceptual Multilevel Model - Level
Specific Equations

Level 1 (individual level):

y,-,-=ﬂ0j+‘9:j 5,].~N(O,02)
Level 2 (school level):

ﬂOj:7/00+7/01Tj+§Oj §Oj~N(O’72)
The ICC is:

p:rz/(02+72)=fz/aﬁ

where 072_ is the total variance and T is the treatment
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Two-Level CRT Design with Covariates:
Conceptual Multilevel Model — Level Specm
Equations

Level 1 (individual level):

Y, =By + B, X, +¢ 5U~N(O,Gf\)
Level 2 (school level):
,30/':7/00"'7/017-/'"'7/02‘/‘//""501 501~N(0’T/2\)
181/' =710

where X is a level-1 covariate (e.g., student SES), Wis a
level-2 covariate (e.g., school size) and T is the treatment.
The first level covariate effect is modeled as fixed in the
second level. Also, the first and second level variances are
now residual variances (subscript A indicates adjustment).
The first level intercept is random at the second level
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Two-Level CRT Design: Single Level
Model with Random Effects

The previous multilevel equations can be written as

single level regression equations (mixed effects models)
with a complicated error term

No covariates: / Error
Y =Yoo + Vorl
Covariates:

Yij = 700 "‘7/017-/ +702VVj +7/10Xij
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Three-Level CRT Design No Covariates:
Conceptual Multilevel Model - Level Specifil

Equations
Level 1 (individual level):

_ - 2
Yik = Toj + € Eijk N(O,O' )

Level 2 (classroom level):

7o jk = Boox +§0jk é:oj'k ~N(O’72)
Level 3 (school level):

Book = Yooo T YoorTk + Mook Took ~ N(O’ wz)

Two ICCs:
Third level: p; = wz/(az +7% 4+ a)z) =’ /c? (School)
Second level: p, = 72/(02 +7° 4+ a)z) =7°/c? (Classroom)
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Three-Level CRT Design with Covariates:
Conceptual Multilevel Model - Level Spm
Equations

Level 1 (individual level):

2
Y, = 7o p + T Xy + €50 &, ~N(0,65)
Level 2 (classroom level):
2
Tojk = IBOOk + ﬁomzjk + §Ojk §Ojk = N(O’ TA)
ik = Dok

Level 3 (school level):

Pook = Yooo + YoorTic + Yo02Wi + oo Mook ~ N(O’ wf\)
Pow = Voro
Piok = V100

Covariate effects 7z, = B,y = 7100 @Nd By = 7010 are fixed



Three-Level CRT Design with Covariates:
Conceptual Multilevel Model - Level Specifil
Equations

X is a level-1 covariate (e.g., student SES), Zis a

level-2 covariate (e.g., class size), Wis a level-3
covariate (e.g., school sector) and T is the treatment.
The first level covariate effect is modeled as fixed at
the second and third levels. Similarly, the second level
covariate is fixed at the third level. All three variances
are now residual because of covariates (subscript A
iIndicates adjustment). The first and second level
iIntercepts are random at the second and third levels.

In cluster designs the treatment is always at the top
level
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Three-Level CRT Design: Single Level
Model with Random Effects

The previous multilevel equations can be written as
single level regression equations (mixed effects

models) with a more complicated error term  Complicated
No covariates: Error

Yijk = Yoo T YoorT

Covariates:
Yijk = Yooo T YoorTx + Yooz

ook §Ojk & ik

kT 7/01on/< T 7/100Xijk T

83



Standard Errors of Regression Estimates and
Clustering

o Appropriate analyses of two and three level data
must take into account the multilevel structure
(nesting or clustering)

o Otherwise, the standard errors of the regression
estimates and statistical tests are incorrect

o The standard errors of treatment effect estimates are
typically smaller when clustering is ignored,
especially in higher levels (cluster levels)

o This results in a higher value of a t-test and a higher
probability of rejecting the null hypothesis when it is
true (committing a Type | error)
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Standard Errors of Regression Estimates
and Clustering

o There are different ways of adjusting standard
errors for clustering
e Conduct the analysis using multilevel models (e.g., SAS

proc MIXED, SPSS linear mixed models, HLM, Miwin,
Stata mixed, R Imer)

e Post hoc corrections:

o Use the design effect: multiply the square root of the design
effect with the standard error of the regression estimate

o Use clustered standard errors (e.g., Stata) that adjust for
clustering (typically clustered robust standard errors are
computed that account for clustering and heteroscedasticity)

85



Randomized Block (or
Multisite) Design




The Randomized Block Design (RBD)

o We wish to compare the means between a
treatment and a control group

o Assign randomly n units (e.g., students) to
treatment or control conditions within blocks (e.g.,
grades, schools)

o Within each block there are 2n level-1 units
(assume a balanced design)

o The block is treated as a random effect (i.e., the
between-block variability is taken into account). The
block is a cluster or sub-cluster and thus cluster
sampling is assumed at the top level (and the
middle level in three-level cases)
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Two-Level RBD

o Diagram of the Experiment:

Schools

Treatment 1 2 ... m
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Two-Level RBD

o Diagram of the Experiment:

Schools

Treatment 1 2 m

o m smaller scale experiments are overall conducted
(one per block) 89




Two-Level RBD: Conceptual
Multilevel Framework (MLF) — Level

Specific Equations
o Without covariates (student / in school j):
Level 1 (student level):

Y, =8, + BT, +¢ &, ~N(0,0%)

Level 2 (school level):

School random effect

Poj = Yoo / Mo ~N(O,72)
131/' :7/10@\ T ~N(O’T$)

Treatment by School interaction
(random effect)

Subscript T indicates treatment. The first level
treatment effect is modeled as random at the second level




Two-Level RBD: Single Level Equation

o The previous two-level model can be expressed
In a single level equation (mixed effects model)
as:

School random effect

Complicated Error Treatment by School interaction
(random effect)
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Two-Level RBD with Covariates:

Conceptual MLF - Level Specific
Equations
Level 1 (individual level):

Y, =B, + BT, + B X, +¢ g; ~N(0,0%)
Level 2 (school level):

Boj =Yoo + Vol + 11, M, ~N(0,75)

Pij = V10 + 1y ;71j~N(O,r$)

Paj = 720

where T is the treatment, X' is a level-1 covariate (e.g.,

student SES) and W is a level-2 covariate (e.g., school

size). The first level covariate effect is fixed at the second

level. In block designs the treatment is always below the top level ¢




Two-Level RBD with Covariates:

Single Level Equation

The single level equation (mixed effects model) is:

yij:7/oo 7/107-//' 7/20Xij

7/01VVj

Complicated error
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Fixed and Random Effects

o Should blocks be fixed or random?
o Fixed Effects

e If the inference focuses on the blocks (e.g., schools) in the
sample, then the blocks can be treated as fixed effects (e.g.,
include a set of school dummies in the regression model). In this
case the two-level model collapses in a single-level regression
model

e Specifically, a model with one fixed level-1 covariate is

Yi = %Yo + lei + VZXL' + SCJ['3 + TlSCJI"4 + &

where SC are block fixed effects (e.g., a set of school dummies)
o Random Effects

e If the inference targets a larger population of blocks (e.g.,
schools), then the blocks can be treated as random effects. The
variance of these random effects is taken into account in the
estimation procedure. Cluster sampling at the top (second) level is
assumed



Three-Level RBD: Conceptual MLF =
Level Specific Equations

Treatment is at the first level. Without covariates
(student j in classroom j in school k)

Level 1 (individual level):

Yic = Boje + BricTi + € ik ~ N(O’ 62)

Level 2 (classroom level):

Bojx = Yook T Sojk Sojk ~ N(O’ 2-2)
Biix = V1ok T S1jx Sijk ~N(O’T$)

Level 3 (school level): ,

Yook = 9000 T Mook Mook ~ N(O’a) )
Yiok = O100 T Mok ok ~ N(O’ a)ﬁ)

Subscript T indicates treatment. The treatment effect
varies across level-2 and level-3 units ”




Three-Level RBD - Single Level Equaﬂn

o The single level equation (mixed effects model)
IS:
Compllcated error

School random effect

Yl]k — 5000 6100Tl]k

Classroom random effect

Treatment by Classroom interaction

Treatment by School interaction
(random effect)

(random effect) o6



Three-Level RBD with Covariates:
Conceptual MLF - Level Specific Equations

Treatment is at the first level, covariates included
(student i/ in classroom j in school k)
Level 1 (individual level):

2

Yijk = :Bo/'k + ﬁ’ljkTijk + ﬂZjKXijk T & Eik ~ N(O’ GA)
Level 2 (classroom level):

2
,Boj'k :7/00k+7/01kzjk+50jk 50]/( ~N(O’TA)

2
:B1jk = Y10k +§1jk 'fﬁk ~N<O’TT)
,szk = Y20k
Level 3 (school level):
Yook = 900 + P01 + 1o Mook ~ N(O’ a’/z\)
Y10k = O100 T Thok Mok ~N(O’a)ﬁ)
Yotk = Oo1o

_ 97
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Three-Level RBD with Covariates:

Conceptual MLF - Level Specific
Equations

X is a level-1 covariate (e.g., student SES), Zis a

level-2 covariate (e.qg., class size), Wis a level-3 covariate (e.g.,
school sector) and T is the treatment. The first level covariate
effect is modeled as fixed at the second and third levels.
Similarly, the second level covariate is fixed at the third level.
The treatment effect varies across level-2 and level-3 units. In
block designs the treatment is always below the top level
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Three-Level RBD - Single Level Equaﬂn

o The single level equation (mixed effects model) is

Yiik = 0000 + 0100Tijx + 0200Xijk + 0010Zjk + 0001 Wi +

i

Complicated error

Classroom random effect School random effect

Treatment by Classroom interaction Treatment by School interaction

(random effect) (random effect)
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Fixed Effects

o Fixed Effects

e |f the inference focuses on the blocks in the sample, then the
blocks are treated as fixed effects (e.g., a set of school dummies is
included in the model at the second level). The third level can be
eliminated, and the model represents then a two-level RBD with
blocks included as covariates at the second level

e The model becomes:
Soj + Tijé1j + &ij

where SC represent block fixed effects (e.g., a set of school
dummies)
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Three-Level RBD: Conceptual MLF—=

Level Specific Equations

Treatment is at the second level. No Covariates
Level 1 (individual level):

yijk = :Boj'k T Ejy Eik ~ N(O, 0'2)
Level 2 (classroom level):

:Bo/'k :700k+7/01k7-jk+§0jk §0jk ~N(O’72)
Level 3 (school level):

Yook = 9000 ook ook ~ N(O’ C‘)Z)
Yot = Q010 T ok ok ~N(O,a)$)

Subscript T indicates treatment. The treatment effect
varies across level-3 units
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Three-Level RBD: Single Level
Equation

o Without covariates the mixed model is:

Classroom random effect

Complicated error

Yiik/= 0000 t 01001k + /

School random effect Treatment by School interaction
(random effect) 102




Three-Level RBD: Conceptual MLF —

Level Specific Equations
Treatment is at the second level (covariates included)
Level 1 (individual level):

Yic = Bojx + B X + i g,.jk~N(O,Jf\)
Level 2 (classroom level):
,Bo/'k:7/00k+701k7— T Yo2xk /k+‘§O/k S0 jk ~N(O’T/2\)
181jk = Y10k
Level 3 (school level):
Yook = 9000 + P01 + Moo Mook ~ N(O’ wf\)
Yotk = 9010 + Motk Mo ~ N(O’ a)ﬁ)
Yozk = Ogz0

7/10k — 5100 103




Three-Level RBD with Covariates:

Conceptual MLF - Level Specific
Equations

X is a level-1 covariate (e.g., student SES), Zis a

level-2 covariate (e.qg., class size), Wis a level-3 covariate (e.g.,
school sector) and T is the treatment. The first level covariate
effect is modeled as fixed at the second and third levels.

Similarly, the second level covariate is fixed at the third level.
The treatment effect varies across level-3 units. In

block designs the treatment is always below the top level
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Three-Level RBD: Single Level
Equation

o With covariates the mixed model is:

Yiik = 0000 + 0010 ik + 0100Xijk T+
0020Zjk + 0001 Wi +

Sop* 00w *

_lassroom random effect

Complicated error

Treatment by School interaction

School random effect (random effect) 105



Fixed Effects

o Fixed Effects

e |f the inference focuses on the blocks in the sample,
then the blocks are treated as fixed effects (e.g., a set
of school dummies is included in the model at the
second level). The third level can be eliminated, and
the model represents then a two-level cluster design
with blocks included as covariates at the second level

e [he model becomes:

Yl] — 50 + 61T] + 62Xij + 5321 +
SC]A4 + T]SC]AS + 501- + gij

where SC represent block fixed effects (e.g., a set of
school dummies)
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Centering




Centering

o Centering is a transformation applied typically to
the independent variables

o In simple random sample designs, a variable is
centered by subtracting the mean from each
value

o The mean of the new (centered) variable is zero
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Centering

o Centering changes the value and the meaning of the
iIntercept. In simple regression with a centered
predictor the intercept is the mean of the outcome

o Centering also changes the standard error of the
iIntercept

o Centering does not change the value or the
meaning of the regression coefficient

o Centering does not change the standard error of the
regression coefficient
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Centering: Two-Level Case

o In two-level designs (e.g., students nested within
schools), there are three kinds of centering:

e Grand-mean centering of a level-1 (student) predictor (using the
overall mean of the predictor)

e Group-mean centering of a level-1 (student) predictor (using the
level-2 unit means of the predictor)

e Grand-mean centering of a level-2 (school) predictor (using the
overall mean of the predictor)
o Grand mean centering means subtracting the grand
(overall) mean

o Group mean centering means subtracting the group or
level-2 unit mean

o These two centering methods affect the interpretation of
the cluster specific intercept 10




Grand-Mean Centering

o Grand-mean centering changes the meaning of
the intercept in the jt" cluster (school)

o The intercept is now the mean outcome in the
cluster (school) minus an adjustment due to the
student predictors

o With Grand-Mean Centering:

e Level-1 predictors can explain the level-2 variance

e Level-1 predictors are not independent of the level-2
predictors

o Centering changes the precision of the
intercept only (as in regression)
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Group-Mean Centering

o Group-mean centering changes the meaning of the
intercept in the " cluster (school)

o The cluster intercept is now the mean outcome in the
cluster (school) not adjusted by student predictors

o With Group-Mean Centering:

e Level-1 predictors cannot explain the level-2 variance (only
the level-1 variance)

e Level-1 predictors are independent of the level-2 predictors
(no conditional effects across levels)

e To reduce the level-2 variance one can create and use
aggregate variables (of level-1 variables) at the second
level

e Level-1 effects are adjusted for level-2 (between cluster)
differences (e.g., school effects)

o Centering changes the precision of all estimates




Centering

o Group-mean centering of level-1 predictors can
be used in block designs to take into account
potential differences among blocks (e.g.,
differences between schools or school effects)

o No centering or grand-mean centering can be
used in cluster designs

o As in typical regression centering predictors is
not a requirement
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Effect Sizes




Effect Sizes

o Effect sizes can be defined in more than one way in
multilevel designs

o A typical effect size is a standardized mean
difference, which is relevant to experiments with a
treatment and a control group

o The numerator of the effect size is naturally the mean
difference

o The question is which standard deviation should be
used in the denominator to standardize the mean
difference

o One standardization procedure is to use the total
standard deviation of the outcome
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Effect Sizes

o In two-level cluster randomized designs, this
leads to:

Vo1 )<
_\

o In three-level cluster randomized designs, this

leads to:
Mean difference

D
0= 2 7/}9021 2
Jostog+ay o

Total standard deviation 116

Mean difference

Total standard deviation




Effect Sizes

o In two-level randomized block designs, one could
use the treatment effect variance. For example,

5 — V10

2 2
\/O-TXS T oy

o Similarly, in three-level randomized block
designs where assignment is at the second level,
the effect size can be defined as

Yo10

O =
[hs + 08+
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