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TOPICS

1. Overview of design sensitivity
2.Cluster randomized trials
3.Multisite randomized trials

4.Design parameters



DESIGN SENSITIVITY



SUMMARIZING THE ATE

) In an experiment, we randomize units to T or C and then we estimate the average
treatment effect (ATE). We can report this estimate 0 and its standard error SE(0).

) We could combine these into a 95% Cil:

O + 1,,SE(0)

) We may want to know if there is evidence that the true 60 # 0. For this, we can use a
hypothesis test based upon the statistic,




DESIGN SENSITIVITY

) These approaches focus on the correct Type | error.

) They keep the likelihood small (e.g., p < .05) that we would reject the null hypothesis and
conclude that the treatment causes changes in the outcome when this is not the case.

) But they do not address Type Il error.

) That is, it is possible that we could design a study in which the 95% CI| would nearly always
include O, or the hypothesis test would never be rejected, even when the intervention
really did cause the outcome to change.

) This concerns is with design sensitivity - is our study the right design, with the right
sample size, etc to ensure that if there really is an effect we would be likely to find it?



DESIGN SENSITIVITY

There are three related concepts of design sensitivity:

) Precision of treatment effect estimates: The standard error of the treatment effect
estimate

) Statistical power: The probability of detecting and effect size of a given magnitude
Power tells you the probability that a design can detect an effect of a given size
(usually at the 0.05 significance level)

) Minimum detectable effect size (MDES): The smallest effect size for which the
design has specified power
) Typically use the 0.05 significance level, with 80% power



IMPROVING SENSITIVITY

These concepts are highly related. We will focus on both power and the MDES.

) Our approach will be:

) Understand the relationship between different designs and parameters and sensitivity.

) Conceive of ways that we can improve such sensitivity, while also keeping our
estimand (the focus of our study) valid and useful.



CAVEAT ABOUT POWER

) Researchers often refer to the “power of the design” (e.g., “this study is underpowered”).

) But this isn't quite correct. Power always refers to:

) A specific parameter (e.g., the ATE 0)

) A specific value of this parameter (e.g., 0 = 0,)

) It is possible for a design to have adequate power for one parameter (e.g., the ATE) and
not for another (e.g., variation treatment effects). Or to have adequate power 0, but not

for another 0y,



CAVEAT ABOUT MDES

) It is easy to get confused about what the MDES means.

) The MDES is the smallest possible value of the ATE 0 that can be detected with a
specified power.

) e.g., if the MDES = 0.19 at 80% power, there is at least 80% power to detect effect
sizes of 0.19, 0.20, 0.21, ... and so on.



CLUSTER RANDOMIZED
DESIGNS




CLUSTER RANDOMIZED DESIGN

) We begin by focusing on a simple design in which:
) Students are nested in schools
) Schools (clusters) are randomly assigned to T or C

) Notice that this same design could:

) Randomize classrooms, teachers, community centers, neighborhoods, etc

) Key feature: groups (clusters) of units are created non-randomly before the
study begins



MODEL

Let Yij be the outcome for the ith student (unit) in the jth school (cluster). Let 7} = *+ 1/2 indicate if

school j is assigned to T. We can model this using:

Y, = By + € where €;; ~ N(0,07)

Poi = Yo+ 11+ 1 where 1; ~ N(O,azz)

Which we can combine into the model

Yij:Vo }’17} N T €



INTRACLASS CORRELATION

The total variance is thus,
Var(Y;) = Var(n;) + Var(e;) = 622 + 012 — 0%

The proportion of total variance that is attributable to clusters is thus,

)

Pr =
2 2
04 +01

Which is called the ‘intraclass correlation coefficient’” (ICC). In education, these values are typically
between about 0.10 to 0.30, depending upon the outcome and population.



EFFECT SIZE AND TEST

71

We can turn the ATE into an effect size using 0 = —. Our NH is
Or
And we test this using the statistic,
o
[ = —
SE(0)

A m, + m.
Where SE(6) = v 1+ (= 1)p,



SAMPLING DISTRIBUTIONS

When the NH is true, i.e., when 0 = 0, the t-
test follows a t-distribution with df = M — 2.

When the NH is false, i.e., when 6 # 0, the t-
test follows a non-central t-distribution with

df = M — 2 and non-centrality parameter

0
A= =
SE(0)
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The black shaded area is the Type I error (e.g.,

STATISTICAL POWER

0.05).

0.4

The red shaded area is the Type Il error (e.g.,
0.20) for a specific o = o,,.
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Power as a function of
Number of students and Number of clusters
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Two-level clustered design.
Clusters are randomized. Students are nested.

Test of difference in means

Statistical model - Random-effects at both levels.

Effect size - Standardized mean difference, d (total) = 0.2500.
Clusters - Number varies, ICC = 0.1500, No covariates.
Students - Number varies, No covariates.
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Power

Power as a function of

Number of clusters and |ICC for Clusters
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Power

Power as a function of

Number of students and ICC for Clusters
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MDES

If we begin by stating the Type | and Il error thresholds we can live with, we can rearrange this into the
MDES,

m,+ m,
Oy R MM_2¢ - |1+ (n— 1)p,]
m,m.n

Where ifdf = M —2 > 16 then 2.8 < M, < 2.9.

In a balanced design with m, = m_. = m this can be simplified into

2[1 + (n— 1)p,]
Oy R Mzm—1\/

mn



NVSMIMPORTANCE

Which matters more: the within school sample size (n) or the number of schools (m)?

Let’'s look at the MDES in the balanced case:

2T+ (= Dpy) 2T—py)  2p,
Oy R Mzm—l\/ = M2m—1\/

mn

Thus, if we let n — oo then &y, — M,,,_,\/2p,/m.

The point is that the number of schools (clusters) is more consequential than the number of
students (units).



vaf 4 VAI-U ES OF Mdf

5.36 28 2.85
3.35 30 2.85
3.11 32 2.85
3.01 34 2.84
2.96 36 2.84
2.93 38 2.84
2.91 40 2.84
2.90 50 2.83
2.88 75 2.82
2.88 100 2.82
2.87 500 2.80
2.86

2.86 ©o 2.80




INCREASING SENSITIVITY
APPROACHES




LET'S ADD COVARIATES

Suppose Xg is a centered level 1 student (unit) covariate and W] is a level 2 school (cluster) level covariate.

Let Yij be the outcome for the ith student (unit) in the jth school (cluster). Let 7} = * 1/2 indicate if school j is
assigned to T. We can model this using:

,BOJ ,BAXC where elf;.‘ ~ N(O,ail)
,B 70 + ¥ T -+ }/‘24W -+ 77] where r]]A ~ N(O,aiz)
:Blj = ?’?

Which we can combine into the model

Y —7’0 le 7’2W y3XC N+ €



WHAT ABOUT 52

Does & = 54?

In a randomized design, YES, these are equivalent!!

This is because Corr(T;, Xg) = Corr(1;, W;) = 0 as a result of randomization.

Thus in an RCT, we include covariates not to improve the estimate of the ATE, but instead
to improve the sensitivity / precision of this estimate.



EFFECT OF ADJUSTMENTS

Now, we can show that the standard error can be written,

. m,+m, |- - -
SE(5") = \/ n;m , R12 T (R22” B Rlz)ﬂz
"' *c

Where R* = 1 — R?.
Since R° < 1 then including covariates reduces the standard error, which then:

) Increases the non-centrality parameter

) Increases statistical power

) Reduces the MDES



DESIGN PARAMETERS

We’'ve shown that the sensitivity of the cluster randomized design is a function of:

2 Numbers of clusters: m,, m,
2 Numbers of units within clusters: 7
> icc: p,

) Amount of variation explained by covariates: R?, R22



SOME ADVICE

) Consider optimal design information as informative but not determinative

) Small cluster sizes are dangerous: losing a few individuals can mean losing the whole cluster
) Round up to have slightly larger clusters than are necessary

) Remember that the design parameters you choose are approximations

) It's safer to over-estimate the ICC than underestimate it

) Inclusion of cluster-level covariates has a larger effect on power than individual level covariates



MULTISITE RANDOMIZED
DESIGNS




MULTISITE RANDOMIZED DESIGN

) We begin by focusing on a simple design in which:

) Students (units) are nested in schools (sites)

) Within each school (site) we randomize students (units) to T or C
) Notice that this same design could:

) Randomize classrooms or teachers within schools

) Randomize schools within districts

) Key feature: randomization is within groups



AVERAGE OF AVERAGES

) In this design, we essentially have 71 separate simple RCTs.

) Within each of m sites, we can estimate a separate ATE: 01,05, ...,0,..

2 Ourfocus is often on the average of these ATEs: 0 = ave(dy,...,0,,)

) But we can also study the variation in these ATEs, the distribution of these ATEs, and
so on. The sensitivity / precision of these estimates, however, is smaller than for the
average.



SITES AS RANDOM? FIXED?

) In the cluster-randomized design, we talked about the schools (clusters) as a random sample
of schools (clusters) in the population.

) In the multisite randomized design, we can also talk about the schools (sites) as a random
sample of schools (sites) in the population. In this case, we are treating the schools (sites) as

random.

) It is possible, however, to conceive of the schools (sites) as fixed. In this case, we are
limiting our inferences to the schools (sites) in the study.

) Our focus will be on sites as random.



MULTISITE DESIGN

Suppose there are m sites and the jth site randomizes njt students to treatment and njc students to control.

Now let 7;; = & 1/2 indicate if student i in site j is assigned to T. We can then write,

= foj + 51T + € with ¢;; ~ N(0,07)
Poi = Yo T Noj with 7o, ~ N(O,azz)
Pij= v+ 1 with 77, ~ N(0,7?)

Which can be combined into the model,

Yi=vo+nl;+n;l;+ny;+e;



NOTICE

Take a look at this again: Y — ;/0+le +;71]T + 1g; + €
Notice that now the treatment is showing up twice:
> ¥ is the ATE
> 1; = 0; — 0 has to do with variation
The total variation is thus,

Var(YiJ-) — 612 + 622 + 77



EFFECT SIZE OPTIONS

The Multisite Design brings with it different options for effect sizes. The differences between
these have to do with the standard deviation that these are scaled against. Two options:

- N
01

1. Within-study SD (akin to that in a simple RCT): 0o

W

/1

2 2

Importantly, notice that neither of these use the total variance - this is because the total
variance includes the variation in treatment-effects. We want the effect of the treatment to
only occur in the numerator.

2. Total SD (akin to that in a cluster RCT): 0, =




HYPOTHESIS TESTING

We might be interested in testing if the intervention causes any sort of change in outcomes. To
do so, wed like to test the NH that H,, : o,, = 0.

Va\

0

w

SE(5,,)

We use the test statistic: =

If indeed there is no effect (HO true), this t-test follows a t-distribution with
df =N —2m=2mm — 1).

If the null hypothesis is false and the true treatment effect is 0,, = 0, then the t-test follows a

non-central t-distribution with non-centrality parameter 4 = 5a/SE(3W).



STANDARD ERROR

For these analyses, we need the standard error. Let w? = 72/012 be the standardized treatment effect

variation.

: F e A 1 nt* + 20t nw* + 2
In balanced designs (n; = n. = n): SE(o,,) = o =
mn mn
~1/2 ~1/2
) 2 1 N ﬁj N ﬁj
In an unbalanced design: SE(0,) = o] 2 - Z
" A1? + o nw? + 1
j=1 " 1 j=1 "
nn¢
. J '
where 1; =
n! + nf¢




POWER AND MDES

For a given effect size 6, we can calculate Power(o,)) = 1 — F(t,, |df, A) + F(—t,, | df, ).

Alternatively, for a given Type | and Il error (and thus Power), we can calculate the MDES:

nw? + 2
Oy = My —

Where again, if df > 16 then M, < 2.9.




TAKING THIS APART

o | nw? + 2 W 2
Examining this more carefully we have: oy, & M, = M, | .
mn m mn

This gives us two insights:

) Again, increasing the number of sites (m) matters more than the number of individuals
within sites (n).

) When there is a lot of variation in treatment effects (across sites), the MDES is larger. This
means that it is harder to detect a non-zero average effect when there is a lot of variation in

effects.
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0.19 | 0.21 | 0.23 | 0.24 | 0.28 0.13 | 0.16 | 0.19 | 0.21 | 0.24




INCREASING SENSITIVITY
APPROACHES




COVARIATES MAY HELP?

We might think we can improve the sensitivity by including covariates.

But the only variance parameter that can be reduced here is the variation in treatment effects, w?.

This means two things:

) We would need to include covariates that explain variation in treatment effects across sites
(not simply that explain variation in outcomes). We know far less about this.

) We would need to include treatment x covariate interactions in the model to do this.



WITH COVARIATES

Let Xg be a centered unit level covariate and W} be a site-level covariate. Then our model is:

= B + BT, + PoX5 + with e; ~ N(0,07,)
B =15 + 1AW+ g with 715 ~ N(0,07,)
f] = }/1 + 74 W + 171] with ;7‘3. ~ N(O,Tj)
By =714

Then our combined model can be written,

Y —?’0 +}/2W+y§‘WT +y4X +77‘1‘>T +;76}+€;}‘



SE WITH COVARIATES

) The inclusion of covariates affects power, the MDES, and sensitivity through the standard error.

) In a balanced design (the simplest form), we have:

2 2 =27 2 =L
. ntiy + 2o nO“w< + 2R
SE(EW) — 61_1 2 - Al — Q p L

= 2 : : : : :
) Here R =1 — R12 Is the proportion in outcomes not explained by the covariates.

) Here Q2 =1- Q2 is the proportion in treatment effect variation not explained by the covariates.
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A common question with the MSRT: Do
we need to use a multi-level model or
can we just use fixed effects (FE) for
sites?

The short answer to this is: No.

Why? Because the treatment effect
variance ends up in the residuals. The
Type | error stated is thus wrong.

0.4

o
N
1

Rejection Rate
=

o
-
L

0.2

0.04

WHAT ABOUT FIXED EFFECTS?
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From Chan and Hedges (in press)




DESIGN PARAMETERS

The Multisite Design has the following design parameters:
) Number of sites: m

2 Number of units within sites: n,n.

2

) Variation in treatment effects across sites: @

) Variation explained in unit outcomes by covariates: R12

) Variation explained in across site treatment effects by covariates: Q2



A CAVEAT

Different software for power and MDES use different definitions of w?. For example, some
use:

2

T
) By within-site variance: a)vzv = —
of
2

> . | , T
By between-site variance: w; = —

o

2

Clearly the scale of these differ. Be careful to read documentation to understand which
definition to use when selecting credible values.



DESIGN PARAMETERS



WHAT YOU CAN CONTROL

) There are a lot of design parameters to consider. Some can be ‘chosen’ by you (e.g., n, m) whereas others are
not as in your control.

) For a specified population of interest:
) The ICC is not in your control
) The degree of variation in treatment effects is not in your control
) The ATE that is ‘true’ is not in your control

) It can be tempting to change the population in order to ‘improve’ the design (e.g., reduce the ICC). But
this means changing the purpose of the study!



EFFECT SIZE



GENERAL CONSIDERATIONS

You don’t want to be too optimistic or pessimistic when
considering the effect size that you will power your study to
detect.

) Optimistic: This intervention is fabulous! We should focus
on an effect size of 0.75 because | just know it will work.

) Pessimistic: This intervention should work but I'm just not
sure about anything, so | would like to power it for an
effect size of 0.02 just in case.




THE JUST RIGHT APPROACH

Thus you might consider this framing instead:

“What is an ES that would would consider
‘meaningful’ - that if the effect was smaller than
this, you'd think it didn’t really ‘matter’, given
the cost, the type of intervention, and so on?”



RESOURCE

resources.html

2.

>

>

>

Resources for Estimating Effect Sizes in Education

2.1 Magnitude of Effect Sizes
2.1.1 Math and/or Reading/ELA Outcomes
2.1.2 Science Outcomes

2.1.3 Social-Emotional/Cognitive/Behavioral Outcomes

2.2 Benchmarks for Effect Sizes


https://steppcenter.northwestern.edu/education-training/statistical-power-resources.html
https://steppcenter.northwestern.edu/education-training/statistical-power-resources.html
https://steppcenter.northwestern.edu/education-training/statistical-power-resources.html

1. RELATIVETO TYPICAL LEARNING

Annual achievement gain: Mean effect sizes across seven nationally normed tests

Grade Reading Math Science Social Studies
Transition

Grade K - 1 1.52 1.14 = =
Grade 1 -2 0.97 1.03 0.58 0.63
Grade 2 - 3 0.60 0.89 0.48 0.51
Grade 3 -4 0.36 0.52 0.37 0.33
Grade 4 - 5 0.40 0.56 0.40 0.35
Grade 5-6 0.32 0.41 0.27 0.32
Grade 6 - 7 0.23 0.30 0.28 0.27
Grade 7 - 8 0.26 0.32 0.26 0.25
Grade 8 -9 0.24 0.22 0.22 0.18
Grade 9 - 10 0.19 0.25 0.19 0.19
Grade 10- 11 0.19 0.14 0.15 0.15
Grade 11 - 12 0.06 0.01 0.04 0.04

NOTES: Adapted from Lipsey, et al., (2012). Spring-to-spring differences are shown. The means

shown are the simple (unweighted) means of the effect sizes from all or a subset of seven tests:
CATS, SAT9, Terra Nova-CTBS, Gates-MacGinitie, MATS, Terra Nova-CAT, and SAT10.




2. ACCOUNT FOROUTCOME TYPES

+How Effect Size Magnitude Relates to Outcomes: Kraft (2020)

Ask

Interpret

Large effect sizes when?

Is the outcome the result of short-
term decisions and effort or a
cumulative set of decisions and
sustained effort over time?

Expect outcomes affected by short-term

decisions and effort to be larger than
outcomes that are the result of cumulative

decisions and sustained effort over time.

Outcomes affected by short-
term decisions.

How closely aligned is the
intervention with the outcome?

Expect outcomes more closely aligned

with the intervention to have larger effect
S1Z€S.

Outcomes closely aligned with
the intervention.

How long after the intervention was
the outcome assessed?

Expect outcomes measured immediately
after the intervention to have larger effect

Outcomes measured
immediately after the

sizes than outcomes measured later. intervention.
How reliably 1s the outcome | Expect measures with lower reliability to | Outcomes measured with
measured? have smaller effect sizes than comparable | higher reliability.

measures with higher reliability.




Achievement effect sizes from randomized studies broken out by type of test and grade level

Type of Test Grade Level N of Effect Sizes = Mean Standard Deviation
Specialized Elementary 230 0.40 0.55
Topic or Test,
Researcher Middle 27 0.43 048
Developed High 43 0.34 038
Total 300 0.39 0.53
Standardized Elementary 374 0.25 0.42
Test, — Narow | piddle 30 0.32 0.26
Scope High 22 0.03 0.07
Total 426 0.24 0.40
Standardized Elementary 89 0.08 027
Test,  Broad | wigdie 13 0.15 0.33
Scope High 1 - -
Total 103 0.08 0.28
Total Elementary 693 0.28 0.46
Middle 70 0.33 0.38
High 66 0.23 0.34
Total 829 0.28 0.45

Note: This table is reproduced from Lipsey, et al. (2012)



3. CONSIDER RESEARCH DESIGN

Relating Effect Sizes fo Subjective Decisions About Research Design: Kraft (2020)

Ask

Interpret

Large effect sizes when?

Are study participants a broad sample

or a subgroup most likely to benefit
from the intervention?

Expect studies with more targeted samples

to have larger effect sizes than studies with
more diverse and representative samples.

Studies with more targeted

samples (most likely to
benefit).

What sample produced the standard

deviation used to estimate effect
sizes?

Expect effect sizes that are standardized

using more homogeneous and less
representative samples to have larger effect

s1Zes.

Studies with more homogenous
samples.

How similar or different was the

experience of the treatment group
compared to the control or

comparison group?

Expect studies to have smaller effect sizes

when control groups have access to
resources Or Services

treatment group.

Studies with interventions very

different than the comparison,
using resources not easily

available.




4. RELATIVETO OTHER INTERVENTIONS

Table 10. Achievement effect sizes from randomized studies broken out by type of intervention
and target recipients

N of Standard
Effect Sizes =~ Median Mean Deviation

Type of Intervention
Instructional format 52 13 21 .36
Teaching technique 117 27 35 47
Instructional component or skill training 401 27 .36 .50
Curriculum or broad instructional program 227 .08 13 32
Whole school program 32 17 11 31
Total 829 18 28 45

Target Recipients

Individual students 252 29 40 53
Small group 322 22 .26 40
Classroom 176 .08 18 41
Whole school 35 14 10 .30
Mixed 44 24 .30 .33
Total 829 18 28 45

NOTE: Standardized mean difference effect sizes from 181 samples. No weighting was used in the calculation of
the summary statistics and no adjustments were made for multiple effect sizes from the same sample.

Achievement effect sizes by intervention type and target recipients (from Lipsey et al)




Table 1
Empirical Distributions of Effect Sizes From Randomized Control Trials of Education Interventions With
Standardized Achievement Outcomes

Subject Sample Size Scope of Test ok
o
Overall Math Reading =100 101-250 251-500 501-2,000 >2,000 Broad Narrow Studies
Mean 0.16 0.1 0.17 0.30 0.16 0.16 0.10 0.05 0.14 0.25 0.03
Standard deviation  0.28 0.22 0.29 0.41 0.29 0.22 0.15 0.11 0.24 0.44 0.16
Mean (weighted) 0.04 0.03 0.05 0.29 0.15 0.16 0.10 0.02 0.04 0.08 0.02
P1 -0.38 ~0.34 -0.38 -0.56 ~0.42 -0.29 -0.23 -0.22 -0.38 ~0.78 -0.38
P10 -0.08 -0.08 -0.08 -0.10 -0.14 -0.07 -0.05 -0.06 -0.08 -0.12 -0.14
P20 -0.01 -0.03 ~0.01 0.02 -0.04 0.00 ~0.01 -0.03 -0.03 0.00 -0.07
P30 0.02 0.01 0.03 0.10 0.02 0.06 0.03 0.00 0.02 0.05 -0.04
P40 0.06 0.04 0.08 0.16 0.07 0.10 0.06 0.01 0.06 0.1 -0.01
P50 0.10 0.07 0.12 0.24 0.12 0.15 0.09 0.03 0.10 0.17 0.03
P60 0.15 0.11 0.17 0.32 0.17 0.18 0.12 0.05 0.14 0.22 0.05
P70 0.21 0.16 0.23 0.43 0.25 0.22 0.15 0.08 0.20 0.34 0.09
P80 0.30 0.22 0.33 0.55 0.35 0.29 0.19 0.11 0.29 0.47 0.14
P90 0.47 0.37 0.50 0.77 0.49 0.40 0.27 0.17 0.43 0.70 0.23
P99 1.08 0.91 1.14 1.58 0.93 0.91 0.61 0.48 0.93 2.12 0.50
k (number of effect 1,942 588 1,260 408 452 328 395 327 1,352 243 139
sizes)
n (number of 747 314 495 202 169 173 181 124 527 91 49
studies)

Note. A majority of the standardized achievement outcomes (95%) are based on math and English language art test scores, with the remaining based on science, social
studies, or general achievement. Weights are based on sample size for weighted mean estimates. For details about data sources, see Appendix A, available on the journal
website. DoE = U.S. Department of Education.

Distribution of Effect Sizes from Kraft (2020)




4. CAVEAT

) Notice that these are distributions based on a lot of studies.
) Why not just use the results from a prior study of this exact intervention?

) Because the effect size from the prior study is an estimate, not the real
effect.

) e.g., if you estimated the ES to be 0.20 in an underpowered pilot study,
the true effect could be much larger or smaller than this! You might
have gotten lucky!
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OTHER PARAMETERS



EFFECT SIZE VARIATION

3. Resources for Estimating Effect Size Variability in
Education

> 3.1 Math and/or Reading/ELA Outcomes

> 3.2 0ther Outcomes (post-secondary outcomes and labor/workforce outcomes)

) https://steppcenter.northwestern.edu/education-training/statistical-power-resources.html


https://steppcenter.northwestern.edu/education-training/statistical-power-resources.html

ICC AND R"2

1. Resources for Estimating ICCs and/or R2s in Education

> 1.1 Math and/or Reading/ELA Outcomes

> 1.2 Science Outcomes

> 1.3 Social-Emotional/Cognitive/Behavioral Outcomes
> 1.4 0ther Outcomes (nutritional outcomes)

> 1.5 Teacher Outcomes

) https://steppcenter.northwestern.edu/education-training/statistical-power-resources.html


https://steppcenter.northwestern.edu/education-training/statistical-power-resources.html

VARIANCE ALMANAC

http://stateva.ci.northwestern.edu/

1 - Select Study Population

@ States Q US National

Grade:
-- select grade -- Vv
Subject:

State:

Population: ©

2 - Select Analysis Levels

The tool provides information that is useful for designing experiments with 2
levels (e.qg., students within schools), and 3 levels (students within schools
within districts) of analysis.

@ Two Levels
If all of the schools in the study are in the same district, or if district will be

used as a fixed blocking effect, then use these design parameters.

O Three Levels

If the schools are not all in the same district and districts are not fixed
blocking variables, then use these design parameters.




A PREVIEW (NATIONAL READING)

No Demographic
Covariates Covariates Pretest Covariate
Grade P R22 R12 R22 R12
7 0.174 - -—- - -
No Demographic 5 0.197 o - o o
Covariates Covariates Pretest Covariate 9 0.250 0.424 0.111 0.349 0.459
Grade P R22 R12 R22 R12
10 0.183 0.717 0.093 0.856 0.529
K 0.233 0.434 0.081 0.742 0.621
’ 0.939 0.608 0.084 0.790 0.640 12 0.174 0.748 0.091 0.892 0.617
M = 0.224 0.665 0.092 0.774 0.548
e 02 0559 0410 0830 0522 a=  0.251 0691  0.089 0790  0.566
3 0.271 0.741 0.079 0759  0.478 b = -0.005 0.013  0.001 -0.005  -0.004
4 0.242 0.704 0.100 0.812 0.540
5 0.263 0.798 0.101 0.830 0.565
6 0.260 0.634 0.076 0.882 0.510




No Demographic Pretest
Covariates Covariates Covariate
Grade fo R’ R/* R, R/°
K 0.243 0.616  0.080 0.857 0.621
1 0.228 0.614  0.079 0.823 0.624
2 0.236 0.436 0.0.88 0.676  0.505
3 0.241 0.639 0.088 0.805 0.594
4 0.232 0.435 0.066 0.679 0.485
5 0.216 0.442 0.072 0.632 0.506
6 0.264 0.117  0.069 0.740 0.502

A PREVIEW (NATIONAL MATH)

No Demographic Pretest
Covariates Covariates Covariate

Grade P R22 R12 R22 R12

7 0.191 0.638 0.096 --- -—-
8 0.185 0.433 0.084 0.822 0.653
9 0.216 0.523 0.097 0.895 0.724
10 0.234 0.78 0.092 0.919 0.649
11 0.138 0.739 0.121 0.835 0.73
12 0.239 0.782 0.102 0.975 0.798
M = 0.220 0.447 0.087 0.805 0.616
a= 0.242 0.460 0.083 0.276 0.482
b= -0.004 0.016 0.002 0.014 0.017




PRETEST: THE MVP

) Covariate that matters the most: School level pre-test

) This matters even more at higher grades

) This is less useful if there is too much time between pre- and post-test
) Adding a second pre-test doesn’t add much

) Subject specific pre-tests are best



