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DESIGN SENSITIVITY



In an experiment, we randomize units to T or C and then we estimate the average 
treatment effect (ATE).  We can report this estimate  and its standard error . 

We could combine these into a 95% CI: 

  

We may want to know if there is evidence that the true . For this, we can use a 
hypothesis test based upon the statistic, 

 .

̂δ SE( ̂δ)

̂δ ± tdf SE( ̂δ)

δ ≠ 0

t =
̂δ

SE( ̂δ)

SUMMARIZING THE ATE



These approaches focus on the correct Type I error.  

They keep the likelihood small (e.g., p < .05) that we would reject the null hypothesis and 
conclude that the treatment causes changes in the outcome when this is not the case.  

But they do not address Type II error. 

That is, it is possible that we could design a study in which the 95% CI would nearly always 
include 0, or the hypothesis test would never be rejected, even when the intervention 
really did cause the outcome to change. 

This concerns is with design sensitivity - is our study the right design, with the right 
sample size, etc to ensure that if there really is an effect we would be likely to find it?

DESIGN SENSITIVITY



There are three related concepts of design sensitivity: 

Precision of treatment effect estimates: The standard error of the treatment effect 
estimate 

Statistical power: The probability of detecting and effect size of a given magnitude 
Power tells you the probability that a design can detect an effect of a given size 
(usually at the 0.05 significance level) 

Minimum detectable effect size (MDES): The smallest effect size for which the 
design has specified power  

Typically use the 0.05 significance level, with 80% power

DESIGN SENSITIVITY



These concepts are highly related. We will focus on both power and the MDES.  

Our approach will be: 

Understand the relationship between different designs and parameters and sensitivity. 

Conceive of ways that we can improve such sensitivity, while also keeping our 
estimand (the focus of our study) valid and useful.

IMPROVING SENSITIVITY



Researchers often refer to the “power of the design”  (e.g., “this study is underpowered”). 

But this isn’t quite correct. Power always refers to: 

A specific parameter (e.g., the ATE ) 

A specific value of this parameter (e.g., ) 

It is possible for a design to have adequate power for one parameter (e.g., the ATE) and 
not for another (e.g., variation treatment effects). Or to have adequate power  but not 

for another .

δ

δ = δa

δa
δb

CAVEAT ABOUT POWER



It is easy to get confused about what the MDES means. 

The MDES is the smallest possible value of the ATE  that can be detected with a 
specified power.  

e.g., if the MDES = 0.19 at 80% power, there is at least 80% power to detect effect 
sizes of 0.19, 0.20, 0.21, … and so on. 

δ

CAVEAT ABOUT MDES



CLUSTER RANDOMIZED 
DESIGNS



We begin by focusing on a simple design in which: 

Students are nested in schools 

Schools (clusters) are randomly assigned to T or C 

Notice that this same design could: 

Randomize classrooms, teachers, community centers, neighborhoods, etc 

Key feature: groups (clusters) of units are created non-randomly before the 
study begins

CLUSTER RANDOMIZED DESIGN



Let  be the outcome for the th student (unit) in the th school (cluster). Let  indicate if 

school  is assigned to T.  We can model this using: 

                         where  

               where  

Which we can combine into the model 

Yij i j Tj = ± 1/2
j

Yij = β0j + ϵij ϵij ∼ N(0,σ2
1)

β0j = γ0 + γ1Tj + ηj ηj ∼ N(0,σ2
2)

Yij = γ0 + γ1Tj + ηj + ϵij

MODEL



The total variance is thus, 

 

The proportion of total variance that is attributable to clusters is thus, 

 

Which is called the ‘intraclass correlation coefficient’ (ICC). In education, these values are typically 
between about 0.10 to 0.30, depending upon the outcome and population. 

Var(Yij) = Var(ηj) + Var(ϵij) = σ2
2 + σ2

1 = σ2
T

ρ2 =
σ2

2

σ2
2 + σ2

1

INTRACLASS CORRELATION



We can turn the ATE into an effect size using . Our NH is 

 

And we test this using the statistic, 

 

Where 

δ =
γ1

σT

H0 : δ = 0

t =
̂δ

SE( ̂δ)

SE( ̂δ) =
mt + mc

mtmcn
1 + (n − 1)ρ2

EFFECT SIZE AND TEST



When the NH is true, i.e., when , the t-
test follows a t-distribution with .  

When the NH is false, i.e., when , the t-
test follows a non-central t-distribution with 

 and non-centrality parameter 

δ = 0
df = M − 2

δ ≠ 0

df = M − 2

λ =
δ

SE( ̂δ)

SAMPLING DISTRIBUTIONS



The black shaded area is the Type I error (e.g., 
0.05). 

The red shaded area is the Type II error (e.g., 
0.20) for a specific . 

The statistical power is 

δ = δa

Power(δa) = 1 − Type II Error = 1 − F(tα/2 |df, λ) + F(−tα/2 |df, λ)

STATISTICAL POWER









If we begin by stating the Type I and II error thresholds we can live with, we can rearrange this into the 
MDES, 

 

Where if  then .  

In a balanced design with  this can be simplified into 

 

δM ≈ MM−2
mt + mc

mtmcn
[1 + (n − 1)ρ2]

df = M − 2 > 16 2.8 < Mdf < 2.9

mt = mc = m

δM ≈ M2m−1
2[1 + (n − 1)ρ2]

mn

MDES



Which matters more: the within school sample size (n) or the number of schools (m)? 

Let’s look at the MDES in the balanced case:  

 

Thus, if we let  then . 

The point is that the number of schools (clusters) is more consequential than the number of 
students (units).

δM ≈ M2m−1
2[1 + (n − 1)ρ2]

mn
= M2m−1

2(1 − ρ2)
mn

+
2ρ2

m

n → ∞ δM → M2m−2 2ρ2/m

N VS M IMPORTANCE



VALUES OF Mdf
df Mdf df Mdf

2 5.36 28 2.85

4 3.35 30 2.85

6 3.11 32 2.85

8 3.01 34 2.84

10 2.96 36 2.84

12 2.93 38 2.84

14 2.91 40 2.84

16 2.90 50 2.83

18 2.88 75 2.82

20 2.88 100 2.82

22 2.87 500 2.80

24 2.86

26 2.86 ∞ 2.80



INCREASING SENSITIVITY 
APPROACHES



LET’S ADD COVARIATES

Suppose  is a centered level 1 student (unit) covariate and  is a level 2 school (cluster) level covariate. 

Let  be the outcome for the th student (unit) in the th school (cluster). Let  indicate if school  is 
assigned to T.  We can model this using: 

                         where  

               where  

 

Which we can combine into the model 

Xc
ij Wj

Yij i j Tj = ± 1/2 j

Yij = βA
0j + βA

1jX
c
ij + ϵA

ij ϵA
ij ∼ N(0,σ2

A1)

β0j = γA
0 + γA

1 Tj + γA
2 Wj + ηA

j ηA
j ∼ N(0,σ2

A2)

β1j = γA
3

Yij = γA
0 + γA

1 Tj + γA
2 Wj + γA

3 Xc
ij + ηA

j + ϵA
ij



Does ? 

In a randomized design, YES, these are equivalent!!  

This is because  as a result of randomization. 

Thus in an RCT, we include covariates not to improve the estimate of the ATE, but instead 
to improve the sensitivity / precision of this estimate. 

δ = δA

Corr(Tj, Xc
ij) = Corr(Tj, Wj) = 0

WHAT ABOUT ?δA



Now, we can show that the standard error can be written, 

 

Where .  

Since  then including covariates reduces the standard error, which then: 

Increases the non-centrality parameter 

Increases statistical power 

Reduces the MDES 

SE( ̂δA) =
mt + mc

mtmcn
R̄1

2 + (R̄2
2n − R̄1

2)ρ2

R̄2 = 1 − R2

R̄2 ≤ 1

EFFECT OF ADJUSTMENTS



We’ve shown that the sensitivity of the cluster randomized design is a function of: 

Numbers of clusters:  

Numbers of units within clusters:  

ICC:  

Amount of variation explained by covariates: 

mt, mc

n

ρ2

R2
1 , R2

2

DESIGN PARAMETERS



Consider optimal design information as informative but not determinative 

Small cluster sizes are dangerous: losing a few individuals can mean losing the whole cluster 

Round up to have slightly larger clusters than are necessary 

Remember that the design parameters you choose are approximations 

It’s safer to over-estimate the ICC than underestimate it 

Inclusion of cluster-level covariates has a larger effect on power than individual level covariates

SOME ADVICE



MULTISITE RANDOMIZED 
DESIGNS



We begin by focusing on a simple design in which: 

Students (units) are nested in schools (sites) 

Within each school (site) we randomize students (units) to T or C 

Notice that this same design could: 

Randomize classrooms or teachers within schools 

Randomize schools within districts 

Key feature: randomization is within groups

MULTISITE RANDOMIZED DESIGN



In this design, we essentially have  separate simple RCTs.  

Within each of  sites, we can estimate a separate ATE: .  

Our focus is often on the average of these ATEs:  

But we can also study the variation in these ATEs, the distribution of these ATEs, and 
so on.  The sensitivity / precision of these estimates, however, is smaller than for the 
average. 

m

m δ1, δ2, . . . , δm

δ = ave(δ1, . . . , δm)

AVERAGE OF AVERAGES



In the cluster-randomized design, we talked about the schools (clusters) as a random sample 
of schools (clusters) in the population. 

In the multisite randomized design, we can also talk about the schools (sites) as a random 
sample of schools (sites) in the population. In this case, we are treating the schools (sites) as 
random. 

It is possible, however, to conceive of the schools (sites) as fixed. In this case, we are 
limiting our inferences to the schools (sites) in the study.  

Our focus will be on sites as random.

SITES AS RANDOM? FIXED?



Suppose there are  sites and the th site randomizes  students to treatment and  students to control. 

Now let  indicate if student  in site  is assigned to T. We can then write, 

                 with   

                               with  

                               with  

Which can be combined into the model, 

m j nt
j nc

j

Tij = ± 1/2 i j

Yij = β0j + β1jTij + ϵij ϵij ∼ N(0,σ2
1)

β0j = γ0 + η0j η0j ∼ N(0,σ2
2)

β1j = γ1 + η1j η1j ∼ N(0,τ2)

Yij = γ0 + γ1Tij + η1jTij + η0j + ϵij

MULTISITE DESIGN



Take a look at this again:                     

Notice that now the treatment is showing up twice: 

 is the ATE 

 has to do with variation  

The total variation is thus, 

Yij = γ0 + γ1Tij + η1jTij + η0j + ϵij

γ1

η1j = δj − δ

Var(Yij) = σ2
1 + σ2

2 + τ2

NOTICE 



The Multisite Design brings with it different options for effect sizes. The differences between 
these have to do with the standard deviation that these are scaled against. Two options: 

1. Within-study SD (akin to that in a simple RCT):     

2. Total SD (akin to that in a cluster RCT):                    

Importantly, notice that neither of these use the total variance - this is because the total 
variance includes the variation in treatment-effects. We want the effect of the treatment to 
only occur in the numerator.

δw =
γ1

σ1

δt =
γ1

σ2
1 + σ2

2

EFFECT SIZE OPTIONS



We might be interested in testing if the intervention causes any sort of change in outcomes. To 
do so, we’d like to test the NH that .  

We use the test statistic:   

If indeed there is no effect (H0 true), this t-test follows a t-distribution with 
.  

If the null hypothesis is false and the true treatment effect is  then the t-test follows a 

non-central t-distribution with non-centrality parameter .  

H0 : δw = 0

t =
̂δw

SE( ̂δw)

df = N − 2m = 2m(n − 1)

δw = δa
λ = δa/SE( ̂δw)

HYPOTHESIS TESTING



For these analyses, we need the standard error. Let  be the standardized treatment effect 
variation. 

In balanced designs ( ):            

In an unbalanced design:                           

where .

ω2 = τ2/σ2
1

nt
j = nc

j = n SE( ̂δw) = σ−1
1

nτ2 + 2σ2
1

mn
=

nω2 + 2
mn

SE( ̂δw) = σ−1
1

m

∑
j=1

ñj

ñjτ2 + σ2
1

−1/2

=
m

∑
j=1

ñj

ñjω2 + 1

−1/2

ñj =
nt

j nc
j

nt
j + nc

j

STANDARD ERROR



For a given effect size  we can calculate . 

Alternatively, for a given Type I and II error (and thus Power), we can calculate the MDES: 

 

Where again, if  then .

δa Power(δa) = 1 − F(tα/2 |df, λ) + F(−tα/2 |df, λ)

δM ≈ Mdf
nω2 + 2

mn

df > 16 Mdf < 2.9

POWER AND MDES



Examining this more carefully we have:  . 

This gives us two insights: 

Again, increasing the number of sites (m) matters more than the number of individuals 
within sites (n).  

When there is a lot of variation in treatment effects (across sites), the MDES is larger. This 
means that it is harder to detect a non-zero average effect when there is a lot of variation in 
effects. 

δM ≈ Mdf
nω2 + 2

mn
= Mdf

ω2

m
+

2
mn

TAKING THIS APART



MDES ω22 ω22

m 0 0.05 0.1 0.15 0.25 0 0.05 0.1 0.15 0.25

n = 10 n = 20

5 0.76 0.85 0.93 1.00 1.13 0.54 0.66 0.76 0.85 1.00

6 0.65 0.72 0.79 0.85 0.97 0.46 0.56 0.65 0.72 0.85

7 0.57 0.64 0.70 0.76 0.86 0.41 0.50 0.57 0.64 0.76

8 0.52 0.58 0.64 0.69 0.78 0.37 0.45 0.52 0.58 0.69

9 0.48 0.54 0.59 0.64 0.72 0.34 0.42 0.48 0.54 0.64

10 0.45 0.50 0.55 0.59 0.67 0.32 0.39 0.45 0.50 0.59

15 0.35 0.39 0.43 0.47 0.53 0.25 0.31 0.35 0.39 0.47

20 0.30 0.34 0.37 0.40 0.45 0.21 0.26 0.30 0.34 0.40

25 0.27 0.30 0.32 0.35 0.40 0.19 0.23 0.27 0.30 0.35

30 0.24 0.27 0.29 0.32 0.36 0.17 0.21 0.24 0.27 0.32

40 0.21 0.23 0.25 0.27 0.31 0.15 0.18 0.21 0.23 0.27

50 0.19 0.21 0.23 0.24 0.28 0.13 0.16 0.19 0.21 0.24



INCREASING SENSITIVITY 
APPROACHES



We might think we can improve the sensitivity by including covariates. 

But the only variance parameter that can be reduced here is the variation in treatment effects, . 

This means two things: 

We would need to include covariates that explain variation in treatment effects across sites 
(not simply that explain variation in outcomes). We know far less about this. 

We would need to include treatment x covariate interactions in the model to do this. 

ω2

COVARIATES MAY HELP?



Let  be a centered unit level covariate and  be a site-level covariate. Then our model is: 

                 with   

                               with  

                               with  

 

Then our combined model can be written, 

 

Xc
ij Wj

Yij = βA
0j + βA

1jTij + βA
2jX

c
ij + ϵA

ij ϵA
ij ∼ N(0,σ2

1A)

βA
0j = γA

0 + γA
2 Wj + ηA

0j ηA
0j ∼ N(0,σ2

A2)

βA
1j = γA

1 + γA
3 Wj + ηA

1j ηA
1j ∼ N(0,τ2

A)

βA
2j = γA

4

Yij = γA
0 + γA

1 Tij + γA
2 Wj + γA

3 WjTij + γ4Xij + ηA
1jTij + ηA

0j + ϵA
ij

WITH COVARIATES



The inclusion of covariates affects power, the MDES, and sensitivity through the standard error.  

In a balanced design (the simplest form), we have: 

 

Here  is the proportion in outcomes not explained by the covariates. 

Here  is the proportion in treatment effect variation not explained by the covariates. 

SE( ̂δw) = σ−1
1

nτ2
A + 2σ2

A1

mn
=

nQ̄2ω2 + 2R̄1
2

mn

R̄1
2 = 1 − R2

1

Q̄2 = 1 − Q2

SE WITH COVARIATES



MDES



A common question with the MSRT:  Do 
we need to use a multi-level model or 
can we just use fixed effects (FE) for 
sites? 

The short answer to this is: No.  

Why? Because the treatment effect 
variance ends up in the residuals. The 
Type I error stated is thus wrong. Actual Significance Levels of Nominal 0.05 Level Tests 

WHAT ABOUT FIXED EFFECTS?



The Multisite Design has the following design parameters: 

Number of sites:  

Number of units within sites:  

Variation in treatment effects across sites:  

Variation explained in unit outcomes by covariates:  

Variation explained in across site treatment effects by covariates: 

m

nt, nc

ω2

R2
1

Q2

DESIGN PARAMETERS



Different software for power and MDES use different definitions of . For example, some 
use: 

By within-site variance:      

By between-site variance:  

Clearly the scale of these differ. Be careful to read documentation to understand which 
definition to use when selecting credible values. 

ω2

ω2
w =

τ2

σ2
1

ω2
b =

τ2

σ2
2

A CAVEAT



DESIGN PARAMETERS



There are a lot of design parameters to consider. Some can be ‘chosen’ by you (e.g., n, m) whereas others are 
not as in your control.  

For a specified population of interest: 

The ICC is not in your control 

The degree of variation in treatment effects is not in your control 

The ATE that is ‘true’ is not in your control 

It can be tempting to change the population in order to ‘improve’ the design (e.g., reduce the ICC). But 
this means changing the purpose of the study! 

WHAT YOU CAN CONTROL



EFFECT SIZE



You don’t want to be too optimistic or pessimistic when 
considering the effect size that you will power your study to 
detect.  

Optimistic: This intervention is fabulous! We should focus 
on an effect size of 0.75 because I just know it will work. 

Pessimistic: This intervention should work but I’m just not 
sure about anything, so I would like to power it for an 
effect size of 0.02 just in case. 

GENERAL CONSIDERATIONS



Thus you might consider this framing instead: 

 “What is an ES that would would consider 
‘meaningful’ - that if the effect was smaller than 
this, you’d think it didn’t really ‘matter’, given 
the cost, the type of intervention, and so on?”

THE JUST RIGHT APPROACH



 https://steppcenter.northwestern.edu/education-training/statistical-power-
resources.html

RESOURCE

https://steppcenter.northwestern.edu/education-training/statistical-power-resources.html
https://steppcenter.northwestern.edu/education-training/statistical-power-resources.html
https://steppcenter.northwestern.edu/education-training/statistical-power-resources.html


1. RELATIVE TO TYPICAL LEARNING



2. ACCOUNT FOR OUTCOME TYPES





3. CONSIDER RESEARCH DESIGN



4. RELATIVE TO OTHER INTERVENTIONS

Achievement effect sizes by intervention type and target recipients (from Lipsey et al) 



Distribution of Effect Sizes from Kraft (2020) 



Notice that these are distributions based on a lot of studies. 

Why not just use the results from a prior study of this exact intervention?  

Because the effect size from the prior study is an estimate, not the real 
effect. 

e.g., if you estimated the ES to be 0.20 in an underpowered pilot study, 
the true effect could be much larger or smaller than this! You might 
have gotten lucky!

4. CAVEAT



Konstantopoulos, S., & Hedges, L. V. (2008). How large of an effect can we expect from school 
reforms? Teachers College Record, 110(8), 1613-1640 

Kraft, M. A. (2020). Interpreting effect sizes of education interventions. Educational 
Researcher, 49(4), 241-253. 

Lipsey, M.W., Puzio, K., Yun, C., Hebert, M.A., Steinka-Fry, K., Cole, M.W., Roberts, M., Anthony, K.S., 
Busick, M.D. (2012). Translating the Statistical Representation of the Effects of Education 
Interventions into More Readily Interpretable Forms. (NCSER 2013-3000). Washington, DC: 
National Center for Special Education Research, Institute of Education Sciences, U.S. 
Department of Education.

SOURCES TO CONSIDER



OTHER PARAMETERS



EFFECT SIZE VARIATION

 https://steppcenter.northwestern.edu/education-training/statistical-power-resources.html

https://steppcenter.northwestern.edu/education-training/statistical-power-resources.html


ICC AND R^2

 https://steppcenter.northwestern.edu/education-training/statistical-power-resources.html

https://steppcenter.northwestern.edu/education-training/statistical-power-resources.html


VARIANCE ALMANAC
http://stateva.ci.northwestern.edu/



A PREVIEW (NATIONAL READING) 

 
No 

Covariates  
Demographic 

Covariates  Pretest Covariate 
Grade ρ  R2

2 R1
2  R2

2 R1
2 

        
K 0.233  0.434 0.081  0.742 0.621 
        

1 0.239  0.608 0.084  0.790 0.640 
        

2 0.204  0.559 0.110  0.830 0.522 
        

3 0.271  0.741 0.079  0.759 0.478 
        

4 0.242  0.704 0.100  0.812 0.540 
        

5 0.263  0.798 0.101  0.830 0.565 
        

6 0.260  0.634 0.076  0.882 0.510 
 

 
No 

Covariates  
Demographic 

Covariates  Pretest Covariate 
Grade ρ  R2

2 R1
2  R2

2 R1
2 

7 0.174  --- ---  --- --- 
        

8 0.197  --- ---  --- --- 
        

9 0.250  0.424 0.111  0.349 0.459 
        

10 0.183  0.717 0.093  0.856 0.529 
        

12 0.174  0.748 0.091  0.892 0.617 
        

M = 0.224  0.665 0.092  0.774 0.548 
a = 0.251  0.691 0.089  0.790 0.566 
b = -0.005  0.013 0.001  -0.003 -0.004 

 



A PREVIEW (NATIONAL MATH)
 

No 
Covariates  

Demographic 
Covariates  

Pretest 
Covariate 

Grade ρ   R2
2 R1

2   R2
2 R1

2 
        

K 0.243  0.616 0.080  0.857 0.621 
        
1 0.228  0.614 0.079  0.823 0.624 
        
2 0.236  0.436 0.0.88  0.676 0.505 
        
3 0.241  0.639 0.088  0.805 0.594 
        
4 0.232  0.435 0.066  0.679 0.485 
        
5 0.216  0.442 0.072  0.632 0.506 
        
6 0.264  0.117 0.069  0.740 0.502 

 

 
No 

Covariates  
Demographic 

Covariates  
Pretest 

Covariate 
Grade ρ  R2

2 R1
2  R2

2 R1
2 

7 0.191  0.638 0.096  --- --- 
        

8 0.185  0.433 0.084  0.822 0.653 
        

9 0.216  0.523 0.097  0.895 0.724 
        

10 0.234  0.78 0.092  0.919 0.649 
        

11 0.138  0.739 0.121  0.835 0.73 
        

12 0.239  0.782 0.102  0.975 0.798 
        

M = 0.220  0.447 0.087  0.805 0.616 
a = 0.242  0.460 0.083  0.276 0.482 
b = -0.004  0.016 0.002  0.014 0.017 

 



PRETEST: THE MVP
Covariate that matters the most: School level pre-test 

This matters even more at higher grades  

This is less useful if there is too much time between pre- and post-test 

Adding a second pre-test doesn’t add much 

Subject specific pre-tests are best


