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Intro to



So far, we’ve focused a lot on the average treatment effect.  Sometimes this is referred to as “the” 
effect or a “summary” effect — neither of which is quite right.  

It is possible — and maybe even likely — that treatment effects will vary. Why? 

Often a “treatment effect” is a comparison of an intervention to ‘business as usual’. We know 
‘business as usual’ differs a lot in schools in the US.  

Interventions are often implemented differently in different places — sometimes adapted, 
sometimes combined with other curricula, and so on. Again, this would suggest variation in effects 
are likely. 

Student prior knowledge differs — which suggests that effects might be larger for those who aren’t 
doing as well (on the test) as those that are already proficient.

TREATMENT EFFECTS



We can be more formal about this. For a very simple RCT, let  individuals be 
included in a study. Each of these individuals has two potential outcomes:  

 : what their outcome would be if they continue with business as usual 

 : what their outcome would be if they instead take part in the intervention 

This means that for each individual there is a unit specific treatment effect: 

i = 1,...,n

Yi(0)

Yi(1)

δi = Yi(1) − Yi(0)

POTENTIAL OUTCOMES



This means that there is a distribution of treatment 
effects. This distribution has: 

Mean =  

Variance = 
 

Notice that  is the correlation 
between the potential outcomes. 

E(δi) = δ = μ1 − μ0

V(δi) = τ2 = σ2
0 + σ2

1 − 2ρ01σ0σ1 ≈ 2σ2(1 − ρ01)

ρ01 = Corr(Yi(0), Yi(1))

SUMMARIES



Unfortunately, we can’t observe both  and  for each unit, and thus we can’t 

observe . 

Yi(0) Yi(1)
δi

FUNDAMENTAL PROBLEM 



However, because of randomization, we can get an unbiased estimate of our average 
treatment effect: . This is what we’ve been doing so far! 

But the variance is more tricky — we don’t know what  is. Of course, we can try 
different values, but any exploration of heterogeneity thus requires additional 
assumptions.  

Put another way: randomization allows us to estimate the average causal effect of an 
intervention without assumptions. The analysis is simple and straightforward to explain. 
But treatment effect heterogeneity requires assumptions and models — it is complex. 

̂δ = Ȳ1 − Ȳ0

ρ01

WHAT WE DO OBSERVE



In a simple RCT we might have the simple model: 

 

Or we might have the moderator model: 

 

Yi = β0 + β1Ti + ϵi

Yi = βA
0 + βA

1 Ti + βA
2 Xc

i + βA
3 TiXc

i + ϵA
i

WHAT CAN WE DO?



Because we centered , we have  and . However, now we have two 
different relationships: 

For those in the comparison:          

For those in the treatment:              

And thus our treatment effects:  

Xc
i β0 = βA

0 β1 = βA
1

E(Yi |C) = βA
0 + βA

2 Xc
i

E(Yi |T) = (βA
0 + βA

1 ) + (βA
2 + βA

3 )Xc
i

E(Yi |T) − E(Yi |C) = βA
1 + βA

3 Xc
i

INTERACTION



Returning to the unit specific treatment effects, we now 
have: 

 

But we can’t see this  because we can’t observe both 
potential outcomes.  

Thus when we observe an interaction, it is part of the 
treatment effect variation, but not all of it.  

 It is important to keep this in mind. We are trying to 
understand and explain variation in an outcome that we 
cannot observe — we are very much feeling around in 
the dark.

δi ≈ [βA
0 + βA

1 Xc
i ] + ηi

ηi

BUT LET’S LOOK MORE CLOSELY



MODERATORS



It is helpful to conceive of different types of moderators. 

Cronbach proposed 4 types: 

Units: e.g., different types of students, prior knowledge, subgroups, etc 

Treatments: e.g., different versions of a treatment, different comparison conditions 

Outcomes: e.g., different measures 

Settings: e.g., different school types

TYPES



Like a covariate, a moderator needs to be observed before the intervention is 
implemented. 

Otherwise it is a mediator! 

Be careful here: 

e.g., make sure the pre-test is measured before (or close to) the beginning 

e.g., make sure any classification of students into subgroups is before

PRIOR TO TREATMENT



If I say “moderator” the first things you will likely think of are: 

Race / Ethnicity 

SES 

Gender 

Is there a reason to expect that the treatment effect is different for these groups? This 
requires considering the mechanism of the intervention. 

THINK THINK THINK



Go back to your logic model. Where in this model do you see that the intervention effect 
might differ? 

e.g., perhaps you suppose that a ‘problem X’ —> need for intervention. This suggests 
that different degrees of ‘problem X’ might impact the effect.  

e.g., perhaps there are supports and resources required for it to be implemented well. 
This suggests that measuring the presence of these supports and resources may affect 
the impact.

MECHANISM



Bryan, Tipton, Yeager (2021)



WHATEVER YOU DO,  
THINK CAREFULLY ABOUT THIS



WHY? MODELS? BEWARE



This seems hard. Why should we care? 

If an intervention works differently for different students, teachers, schools, communities 
and so on, then this means the ATE is simply not enough information to summarize the 
intervention’s efficacy. 

If an intervention effect varies information about this could be helpful for: 

 Understanding ‘for whom and under what conditions’ the intervention works — 
something decision makers care about.  

Understanding the mechanism of the intervention — something scientists care about. 

WHY DO WE CARE?



The simplest question we could ask is: What is the ATE for different subgroups that are 
important to decision-makers? 

e.g., providing separate ATE estimates for those with ‘low’ ‘average’ ‘high’ reading 
ability. 

e.g., providing separate ATE estimates for different demographic subgroups  

e.g., providing separate ATE estimates for different school-types — urbanicity, region, 
school structure, grade-levels and so on.

1. SUBGROUP EFFECTS



Subgroup effects can be thought of as ‘descriptive’ — our goal is simply to provide ATE 
estimates for different slices of the population.  

Some things to keep in mind: 

We need to know what this population is so that we can describe the population and 
subgroup appropriately (e.g., the ATE isn’t for all “rural” schools, its for all rural schools 
in this population). 

Splicing the data into subgroups reduces sensitivity — the overall ATE might have 
adequate power, but the subgroups likely do not. Thus, be careful with hypothesis 
testing. 

SUBGROUPS



Alternatively, we might be interested in understanding if the effect for one subgroup is different 
from another.  

e.g., Is the ATE in rural schools different form the ATE in urban schools? 

We have to be careful here for a few reasons: 

Interpretation issues 

Confounding and causality 

Power

2. DIFFERENTIAL EFFECTS



Suppose we investigate this model: 

 

And we find that  is non-zero (putting aside power). 

Interpretation: 

If  is continuous we have: “The ATE is  and for each 1-unit change in , the expected 

treatment effect changes by  units.” 

If  is a centered dummy variable, now we have “The ATE is  and for the effects for those in 

Group 2 are  units larger [smaller] than those in Group 1.”

Yi = βA
0 + βA

1 Ti + βA
2 Xc

i + βA
3 TiXc

i + ϵA
i

βA
3

Xc
i βA

1 Xc
i

βA
3

Xc
i βA

1
βA

3

A. INTERPRETATION



When we move to comparisons — interactions — it is easy to slip into causal language.  

However, while the ATE is a causal effect (due to randomization), interaction effects are not causal. 
They are observational.  

We have to be worried about confounders.  For example, we find that an intervention reduces student 
suspensions for Black students more than non-Black students.  

What does the intervention have to do with race/ethnicity?  

Examining the data, we might find that suspension rates (pre-test) are higher for Black students 
than others. Thus we can reduce suspensions among Black students because they actually get 
suspended — whereas we cannot for other groups because they are less likely to get suspended.  

This difference is subtle — but it points to how we interpret and attribute these differential effects. 

B. CONFOUNDING 



Let’s imagine we estimate ATEs for two subgroups (1, 2) and then we compare them: 

 

Now let’s look at standard errors: 

 

Notice that this standard error is more than twice as large! 

(This is not always the case — we will discuss situations later in which power is actually better 
for interactions than the ATE)

̂β3 = ̂δ2 − ̂δ1

SE( ̂β3) = SE2( ̂δ2) + SE2( ̂δ1)

C. STATISTICAL POWER



A good principle to remember is “Absence of evidence is not evidence of absence.” 

You cannot prove the null hypothesis to be true. You can only prove it false. 

Put another way, if you planned your study design with a focus on the ATE — and the study 
is adequately powered for the ATE — it is possible that power if substantially lower for 
interactions / moderators / comparisons of subgroups. 

Thus, if you do not find the interaction effect significant, it could be because the treatment 
effects do not differ OR because the test is very underpowered.  

Altogether this means you can prove that effects vary — but proving that the effect is 
constant is not possible. 

BEWARE TYPE II



So far, I’ve focused on a single moderator with a single interaction. We might think of this as the case in 
which we have a “confirmatory” test. 

But what if we simply want to explore the data to see if we can build a model that predicts treatment 
effects? For example, maybe we collected  variables in the data and we want to know which subset of 
these  variables best explains variation in treatment effects. 

If we approach this using hypothesis testing, we’re going to need to worry about inflated Type I 
errors. That is, with multiple testing we’re likely to end up with something significant just by chance. 

Taking a step back, we can see that if there are 4 variables, we have many possible models: ABCD, 
ABC, ABD, ACD, BCD, AB, AC, AD, BC, BD, A, B, C, D. This suggests that this is a model selection 
problem — and a predictive model selection problem at that. 

p
p

3. WHAT ABOUT OTHER VARIABLES?



Once we move into the predictive model world, everything becomes more complicated.  

For example: 

Instead of hypothesis testing, measures of model fit matter more.  

These measures of model fit include penalties for the inclusion of too many variables (e.g., think adjusted- , 
AIC, BIC).  

Fitting this many models manually is tricky. Here is where algorithms / computational tools can help. 

Some of these best methods out there are Bayesian Causal Forests — which involve a combination of Bayesian 
models, random forests, tuning parameters, and so on.  

Overall, this is to say: Proceed carefully. This work can be rewarding — but it requires strong methods, sound 
reasoning, and good computational skills.   

R2

PREDICTIVE MODELS



CLUSTER DESIGNS



Let’s return to the CRT. Recall, we have student  in school , and schools are randomized.  

 

 

 

In a single model we have: 

i j

Yij = β0j + β1jXc
ij + ϵij

β0j = γ0 + γ1Tj + γ3Wj + γ5WjTj + η0j

β1j = γ2 + γ4Tj

Yij = γ0 + γ1Tj + γ2Xc
ij + γ3Wj + γ4Xc

ijTj + γ5WjTj + η0j + ϵij

2-LEVEL CLUSTER RANDOMIZED



Let’s look more carefully: 

 

In this model: 

 is a cross-level interaction. It describes how the treatment effect differs across 
student characteristics. 

 is a site-level interaction. It describes how the treatment effect differs across 
different types of schools. 

Yij = γ0 + γ1Tj + γ2Xc
ij + γ3Wj + γ4Xc

ijTj + γ5WjTj + η0j + ϵij

β4

β5

IN DETAIL



Cross level moderators: 

Are treatment effects different for students in 3rd and 4th grade? (Perhaps the 
intervention is better in one grade than another) 

Are treatment effects different for students from historically excluded groups than for 
others? 

Cluster level moderators: 

Are treatment effects different for schools with lower pre-test scores? 

Are treatment  effects different for schools that had been using program X versus those 
using Z in the prior year?

EXAMPLES



Let’s start with a simpler model, with only a cluster level moderator.  

Let  indicate if a school is small (=1) or not (=0).  

Assume for now that we include  schools in the study and that  schools are 
small or not (equal allocation to the subgroups).  

Then we have: 

Wj

M = mt + mc M/2

Yij = γ0 + γ1Tj + γ3Wj + γ5WjTj + η0j + ϵij

CLUSTER LEVEL MODERATOR



We can estimate  using:           

Thus we have: 

γ5 ̂γ5 = [Ȳt2 − Ȳc2] − [Ȳt1 − Ȳc1]

SE( ̂γ3) = 4
nR̄2

wσ2
2 + σ2

1

nm

CONT’D



If we move to the standardized effect  with ICC with  then, 

 

Thus, the Minimum Detectable Effect Size Difference (MDESD) is: 

δ =
γ3

σ2
2 + σ2

1

ρ =
σ2

2

σ2
1 + σ2

2

SE( ̂δ5) = 4
nR̄2

wρ + (1 − ρ)
nm

δMM = 4Mdf
nR̄2

wρ + (1 − ρ)
nm

MDESD



Now, let’s focus on a dummy variable  which indicates if students are in 3rd grade 
(versus 4th). Again, assume this is balanced. Our model is: 

 

Notice here that I did not center the dummy variable. Thus: 

 is the ATE for 4th grade classrooms 

 is the difference in ATEs between 3rd vs 4th grade classrooms

Dij

Yij = γ0 + γ1Tj + γ2Dij + γ4DijTj + η0j + ϵij

γ1

γ4

STUDENT LEVEL MODERATOR



Now we have:                

And the standard error: 

̂γ3 = [Ȳt3 − Ȳc3] − [Ȳt4 − Ȳc4]

SE( ̂γ3) = 4
R̄2

Dσ2
1

nm

CONT’D



If we move to the standardized effect  with ICC with  then, 

 

Thus, the Minimum Detectable Effect Size Difference (MDESD) is: 

δ =
γ3

σ2
2 + σ2

1

ρ =
σ2

2

σ2
1 + σ2

2

SE( ̂δ3) = 4
R̄2

D(1 − ρ)
nm

δMM = 4Mdf
R̄2

D(1 − ρ)
nm

MDESD



Recall that in this model, our MDES is:                                                     

If we use a cluster-moderator we have MDESD:                              

If we use a student-level moderator we have MDESD:                 

δM ≈ 2Mdf
nρ + (1 − ρ)

mn

δMM ≈ 4Mdf
nR̄2

wρ + (1 − ρ)
nm

δMM ≈ 4Mdf
R̄2

D(1 − ρ)
nm

COMPARING THESE



For a given design: 

Cluster-level moderators are less sensitive than the ATE. 

Student-level moderators are more sensitive than the ATE. 

Caveat: 

We have focused on dummy variables that are balanced as moderators. In real-life, 
these are likely not balanced, thus reducing sensitivity. 

TAKE-AWAYS


