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Topics for Today

1. Design sensitivity and planning a design

2. Planning cluster randomized designs

3. Planning multisite (randomized block) designs

4. What effect sizes are reasonable?

5. How do we get values of other design parameters?

6. What about subgroup (moderator) effects

7. Is it ever OK to ignore levels of sampling in our analyses?



Design Sensitivity

Sound research design requires quantification of the sensitivity of research designs to detect effects
There are three related concepts of design sensitivity:

Precision of treatment effect estimates: The standard error of the treatment effect estimate
Statistical power: The probability of detecting and effect size of a given magnitude
Minimum detectable effect size: The smallest effect size for which the design has specified power 
(often 80% following Cohen’s recommendation)

Power tells you the probability that a design can detect an effect of a given size (usually at the 0.05 
significance level)
Minimum detectable effect size tells you what effect size a design can detect (usually at the 0.05 
significance level, usually with 80% power)



Planning a Design

Planning a design is creating a data collection protocol that has adequate sensitivity to detect the 
effect size expected or the smallest meaningful effect size
So far that means finding a sample size that has adequate sensitivity

If resources are unlimited, this means simply obtaining an adequate sample size (look at a graph or 
a table of power values)
Resources (budget) are essentially always limited in research
This reality makes design a more difficult problem

If a completely randomized design is inadequately sensitive, there are two alternatives:
-Improve the existing design to increase sensitivity
-Choose a different type of design



Improving Design Sensitivity
Design sensitivity (holding significance level constant) in any design depends on effect size, sample 
size(s), and certain other design parameters which are different for different designs

Thus to increase design sensitivity we can: Increase sample size(s), reduce variation (which 
increases the effective effect size, or (sometimes) alter other design parameters

While the effect size of a treatment may not easily be increased, use of covariates and restricted 
sampling can reduce variation so that the “effective” effect size is increased

Depending on constraints there may be ways of increasing sample size by planned imbalance



The Cluster Randomized Design



The Cluster Randomized Design

The figure below illustrates the cluster randomized design

In the language of experimental design, clusters (C) are nested within treatments (T) (every cluster 
receives only one treatment)
This is also called the group randomized design or the hierarchical design in classical experimental 
design

T1 T2

C1 C2 C3 C4



Why Cluster Randomization?

Cluster randomization is less efficient (leads to less sensitive designs) than individual randomization
So why randomize clusters?

Assignment of individuals to treatments independently is sometimes impractical, unfeasible, or 
impossible
For example:
It is impractical  to assign students in the same classroom to different curricula, have different duty 
rules for interns supervised in the same clinic

It may be politically difficult to assign only some students (or teachers) in a school to a much more 
desirable treatment
It is theoretically impossible to assign aggregate treatments to different individuals within the same 
aggregate (e.g., while school behavior support, whole school trust interventions)



Why Cluster Randomization?

Contamination between treatment and control groups is sometimes a concern
This could be inadvertent or intentional

For example
Control teachers might learn of new teaching methods from their colleagues in the treatment group
Students in a tutoring intervention might bring their untutored peers to their tutoring sessions, 
intentionally subverting the experiment

Parents in the same school might insist that their children assigned to the control group receive the 
treatment



Digression: Two-Stage Cluster Sampling

The relevant sampling model for cluster randomized designs is two stage cluster sampling
Stage 1: Obtain a simple random sample of clusters

Stage 2: Obtain a simple random sample of individuals within clusters
You all know that if the population variance is σT

2 the variance of the mean of a simple random 
sample of size N from that population is σT

2/N
But the variance of the mean of a two-stage cluster sample from that population is not σT

2/N, but    
[1 + (n – 1)ρ]σT

2/N
where ρ = σ2

2/ σT
2 = σ2

2/ (σ1
2 + σ2

2) is the intraclass correlation
Here σ2

2 is the between-cluster (means) variance and σ1
2 is the within-cluster variance and the total 

variance is σT
2 = σ1

2 + σ2
2

The quantity [1 + (n – 1)ρ] is called the design effect and represents the penalty (in variance) for 
using a two-stage cluster sample instead of a simple random sample



Design Effect for Clusters of Size n

______________________________________
Intraclass Individuals  per  Cluster (n) 
Correlation (ρ)           10 50          500
0.01                         1.04     1.22        2.48
0.05                         1.20            1.86        5.09 
0.10                         1.38            2.43        7.13 
0.15 1.53 2.89 8.71
0.20 1.67 3.29 10.04
0.25 1.80 3.64 11.21
____________________________________



Where Does the Design Effect Come from?

Think of the ith observation in the jth cluster Yij as composed of a cluster mean αi and a deviation 
from that cluster mean εij then

Yij = αi + εij
The variance of the cluster mean is 

It is conventional to define the intraclass correlation as ρ = σ2
2/(σ1

2 + σ2
2) = σ2

2/σT
2, therefore

The variance of the sample mean from a two-stage cluster sample on m clusters of size n (total size 
mn) is just the variance of the mean of m cluster means
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This is [1 + (n – 1)ρ] times σT
2/mn, the variance of 

the mean of a simple random sample of size mn



Two Stage Cluster Sampling

This is relevant because the estimate of the treatment effect in a cluster randomized design is a 
comparison of the means of treatment clusters with the means of control clusters
Thus the variance of the estimated treatment effect depends on the variance of means of two-stage 
cluster samples (one for treatment and one for control)

This has substantial effects on the sensitivity of the design and on the analyses required



Model and Notation:
Cluster Randomized Designs

Let Yij be the outcome score for ith level 1 unit (individual) in the jth level 2 unit (cluster).  The level 1 
(individual level) model is

Yij = β0j + εij, and εij ~ N(0, σ1
2) 

where β0j is the mean of the jth cluster, and εij is a level 1 residual.  The level 2 (cluster level) model 
is

β0j = γ0 + γ1Ti + ηj, and ηj ~ N(0, σ2
2) 

where Ti = ± ½ is a treatment indicator variable and ηj is a level 2 (cluster level) residual.
We could write the combined model as

Yij = γ0 + γ1Ti + ηj + εij.
Note that the combined residual term is (ηj + εij) and the residuals from observations in the jth

cluster share the same random effect ηj

This violates the usual assumption of independence of the residuals



Effect Size and Intraclass Correlation:
Cluster Randomized Designs

The total variance in the population is partitioned into between and within cluster variance

σT
2 = σ1

2 + σ1
2

The ratio of between cluster to total variance, the (level 2) intraclass correlation 

quantifies how much clustering there is in the population

The natural effect size in this design is a variation of Cohen’s d, which in this notation is 
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Hypothesis Testing:
Cluster Randomized Designs

The test of the hypothesis that the treatment effect is zero, that is
H0: γ1 = 0

is based on the test statistic 

which is taken to have the t-distribution with M – 2 degrees of freedom (M is the number of 
clusters)

In a design with mT treatment clusters and mC control clusters all of size n

Recall that 1 + (n – 1)ρ2 is the design effect from sample surveys
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Hypothesis Testing:
Cluster Randomized Designs

When the null hypothesis is false, that is γ1 ≠ 0, then the test statistic has the noncentral t-
distribution with M – 2 degrees of freedom and noncentrality parameter 

Note: If the design is balanced (all clusters have the same size n) a two-sample t-test using cluster 
means as the data is exactly correct, is equivalent to the multilevel model test, and is an optimal 
test of treatment effects,

( )1 1̂SEλ γ γ=



Unbalanced Cluster Randomized Designs

When the design is not balanced, the standard error of the test statistic is much more complex

This can be better understood by seeing it as a combination of “averaged” design effects

where, dropping the T or C superscripts
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How Does this Complex SE Arise?
The SE in unbalanced designs is quite complicated, but there is a way to understand it
The treatment effect (parameter) γ1 is the difference between the means of the treatment and 
control groups, so is the estimate of γ1 (the estimated treatment effect) 

The cluster means in the treatment group have expected value γ0 + γ1/2 and the cluster means in 
the control group have expected value γ0 – γ1/2
Therefore any normalized weighted average of the cluster means in a particular treatment group 
estimates the mean of that treatment group (normalized means weights sum to 1)
Maximum likelihood generates efficient estimates by estimating the weighted average that is most 
precise

The most precisely estimated weighted mean is the inverse variance weighted mean (this is just like 
in meta-analysis)  using weights

( )1 1j j iw v v= ∑



How Does this Complex SE Arise?

The variance of the jth cluster mean is vj = σ2
2 + σ1

2/nj and 1/vj = nj /(njσ2
2 + σ1

2)
The variance of the inverse variance weighted mean is the reciprocal of the sum of the weights

Therefore the variance of the estimate of each treatment group mean is (dropping the T or C 
superscripts) is

The variance (square of the SE) is just the sum of two terms like this (one for the treatment group 
and one for the control group)
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Design Sensitivity: 
The Cluster Randomized Design

Precision

When all the treatment and control clusters are of size n, then

Statistical Power

power = 1 – F(tα/2 | df, λ) + F(- tα/2 | df, λ) 
where F(x| df, λ) is the cumulative distribution function of the noncentral t-distribution with df
degrees of freedom and noncentrality parameter λ
As an approximation, the noncentral t-distribution is approximately a translated central t-
distribution (i.e., with λ = 0), so F(x| df, λ) ≈ F(x – λ| df, 0) [works well if df and x are fairly large)
This approximation is helpful because you can compute with it in spreadsheets like EXCEL

 









MDES in Cluster Randomized Designs 
as a function on n for ρ2 = 0.20

m = 10

m = 20

m = 25



Approximate Minimal Detectable Effect Size:
Cluster Randomized Designs

It is useful to have an algebraic approximation to the minimum detectable effect size

where Mdf is the constant depending on the degrees of freedom
Mdf is a decreasing function of df and Mf < 2.9 for df > 16, but M∞ = 2.80, so 2.8 <  Mdf < 2.9
When the design is balanced so that mT = mC = m, then δM has the very simple form
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Sample Size and MDES:
Cluster Randomized Designs

The relation between sample size and design sensitivity is more complex in cluster randomized 
designs than in the completely randomized design because of two level cluster sampling
In the completely balanced design, the approximates MDES is 

From this expression, see that as m → ∞, δM → 0
But note that as n → ∞,
Therefore total sample size is a poor indicator of design sensitivity—it depends on m and n
separately (and mostly on m)
The point where increasing n has little effect occurs for relatively small n
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Values of Mdf

df Mdf df Mdf

2 5.36 28 2.85
4 3.35 30 2.85
6 3.11 32 2.85
8 3.01 34 2.84

10 2.96 36 2.84
12 2.93 38 2.84
14 2.91 40 2.84
16 2.90 50 2.83
18 2.88 75 2.82
20 2.88 100 2.82
22 2.87 500 2.80
24 2.86
26 2.86 ∞ 2.80



Calculating Mdf

The calculation of Mdf is based on approximating the noncentral t-distribution by a translated central 
t-distribution and ignoring the tail of the distribution that is opposite the effect size (usually the 
negative tail)

power = F{t < cα/2 | df, λ } = F{t – λ < cα/2 | df, 0 }
First compute the two-sided critical value at the significance level α
Then compute the value of the t-distribution corresponding to the quantile for the desired power 
(e.g., for 80% = 0.8 power, the 80th percentile.  Call this tpower

For example, if df = 50, cα/2 =1.984 and tpower= 0.845, so that Mdf = 1.984 + 0.845 = 2.83



Increasing Design Sensitivity:
Cluster Randomized Designs

Design sensitivity can be increased by using covariates
Covariates can be added at either level 1 (the individual level) or level 2 (the cluster level)

The effect of a covariate at a particular level can be understood as decreasing the (effective) 
variance at that level
Because the level 2 variance component has the largest effect on uncertainty of the treatment 
effect, level 2 covariates will generally have the largest effect on design sensitivity



Multilevel Model with Covariates:
Cluster Randomized Designs with Covariates

Suppose X is a centered level 1 (individual level) covariate and W is a level 2 (cluster level) covariate

Let Yij be the outcome score for ith level 1 unit (individual) in the jth level 2 unit (cluster).  The level 1 
(individual level) model is

Yij = β0j
A + β1j

AXij+ εij
A, and εij

A ~ N(0, σA1
2) 

The level 2 (cluster level) model is
β0j

A = γ00
A + γ01

ATj + γ02
AWj + ηj

A, and ηj
A ~ N(0, σA2

2)
β1j

A = γ10
A

where Tj = ± ½ is a treatment indicator variable, γ01
A is the treatment effect, γ02

A is the effect of the 
cluster level covariate, and ηj

A is a level 2 (cluster level) residual (we illustrate only one covariate at 
each level)
We could write the combined model as

Yij = γ00
A + γ10

AXij + γ01
ATj + γ02

AWj + ηj
A + εij

A.



Hypothesis Testing:
Cluster Randomized Designs with Covariates

The test of the hypothesis that the treatment effect is zero, that is
H0: γ01 = 0

is based on the test statistic 

which is taken to have the t-distribution with M – 2 – q degrees of freedom (M is the number of 
clusters), where q is the number of level 2 (cluster level) covariates
In a balanced design with mT treatment clusters and mC control clusters all of size n

where 
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Hypothesis Testing:
Cluster Randomized Designs with Covariates

When the null hypothesis is false, that is when γ01 ≠ 0 , then t is taken to have the noncentral t -
distribution with M – 2 – q degrees of freedom and noncentrality parameter

Note that now  is the covariate adjusted standard error

Comparing the covariate adjusted to the unadjusted noncentrality parameters, see that 
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Design Sensitivity: 
The Cluster Randomized Design with Covariates

Precision

When all the treatment and control clusters are of size n, then

Statistical Power

power = 1 – F(tα/2 | df, λ) + F(- tα/2 | df, λ) 
where F(x| df, λ) is the cumulative distribution function of the noncentral t-distribution with df
degrees of freedom and noncentrality parameter λ
As an approximation, the noncentral t-distribution is approximately a translated central t-
distribution (i.e., with λ = 0), so F(x| df, λ) ≈ F(x – λ| df, 0) [works well if df and x are fairly large)
This approximation is helpful because you can compute with it in spreadsheets like EXCEL
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Approximate Minimal Detectable Effect Size:
Cluster Randomized Design with Covariates

It is useful to have an algebraic approximation to the minimum detectable effect size

where Mdf is the constant depending on the degrees of freedom discussed before
Recall that Mdf is a decreasing function of df and Mf < 2.9 for df > 16

When the design is balanced so that mT = mC = m, then δ has the very simple form
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Comparing Sensitivity with and without 
Covariates:

Cluster Randomized Designs
Compare expressions for the MDES with and without covariates

(because Mdf changes little with df if df is moderate in size)
Because 1 – ρ2 is typically smaller than nρ2, the ratio of MDES values is very approximately (for large 
n)

This is analogous to the result for the completely randomized design

A single level 2 covariate with R2 = 0.7 (R2
2 = 0.49) would reduce the MDES by a factor of 
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Limiting Values of MDES:
Cluster Randomized Designs

Note that even if the covariates at the individual level explained all of the variance at the individual
in  that case

If the covariates at the cluster level explained all of the variance at the cluster level, so that R2
2 = 1, 

then δAM > 0. In that case
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MDES in Cluster Randomized Designs with 
Covariates as a Function of R2 (n = 20)

R2

m 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
5 0.99 1.01 1.00 0.97 0.94 0.90 0.85 0.78 0.69 0.58
6 0.88 0.89 0.88 0.86 0.83 0.79 0.75 0.69 0.61 0.51
7 0.80 0.80 0.79 0.78 0.75 0.72 0.68 0.62 0.55 0.46
8 0.74 0.74 0.73 0.71 0.69 0.66 0.62 0.57 0.51 0.42
9 0.69 0.69 0.68 0.67 0.64 0.62 0.58 0.53 0.47 0.40

10 0.65 0.65 0.64 0.63 0.61 0.58 0.54 0.50 0.44 0.37
12 0.59 0.59 0.58 0.57 0.55 0.52 0.49 0.45 0.40 0.34
15 0.52 0.52 0.51 0.50 0.48 0.46 0.43 0.40 0.36 0.30
18 0.47 0.47 0.46 0.45 0.44 0.42 0.40 0.36 0.32 0.27
20 0.45 0.44 0.44 0.43 0.42 0.40 0.37 0.34 0.30 0.26
25 0.40 0.40 0.39 0.38 0.37 0.35 0.33 0.30 0.27 0.23
30 0.36 0.36 0.35 0.35 0.34 0.32 0.30 0.28 0.25 0.21
35 0.33 0.33 0.33 0.32 0.31 0.30 0.28 0.26 0.23 0.19
40 0.31 0.31 0.31 0.30 0.29 0.28 0.26 0.24 0.21 0.18
50 0.28 0.28 0.27 0.27 0.26 0.25 0.23 0.21 0.19 0.16



Improving Sensitivity by Planned Imbalance:
Cluster Randomized Designs

For a fixed total sample size, balanced designs have the greatest sensitivity (smallest MDES)
Sometimes a greater total sample size can be obtained by assigning a larger number of clusters to 
one of the two treatment groups (usually the control group)

This can result in greater power, greater sensitivity, and smaller MDES that the balanced design 
(with smaller number of clusters)
For example, the number treated can be limited by resources, research personnel, equipment, etc.
Alternatively, increasing the probability of being randomized to treatment can increase acceptability 
of random assignment

Improvements in power and design sensitivity are not large, but can be meaningful



Unbalanced Cluster Randomized Designs

Suppose that the number of clusters in the intervention group is fixed at mT, but the number in the 
comparison group is not, i.e., mC =cmT, for some 𝑐𝑐 ≥ 1 and the size of each cluster is n
The variance of the treatment effect estimate is therefore

The minimum detectable effect size in the unbalanced design is approximately

The ratio of MDES in unbalanced to balanced designs is approximately
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Unbalanced Cluster Randomized Designs

Note that the maximum possible decrease in MDES is a factor of 
This is achievable only with an infinite sample size

More realistic might be doubling or tripling the size of the control group resulting in a decrease of 
MDES by a factor of
This might not seem to be a meaningful reduction in MDES, but some funding agencies require that 
designs achieve 80% power and this can sometimes be essential to do so
Planned imbalance can be combined with covariates to increase sensitivity

1 2 0.71≈

3 4 0.87 4 6 0.82= =or 



Combining Imbalance and Covariates:
Cluster Randomized Designs

The test of the hypothesis that the treatment effect is zero, that is
H0: γ01 = 0

is based on the test statistic 

which is taken to have the t-distribution with M – 2 – q degrees of freedom (M is the number of 
clusters), where q is the number of cluster level covariates
In a balanced design with mT treatment clusters and mC control clusters all of size n

where mC = cmT,
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Combining Imbalance and Covariates:
Cluster Randomized Designs

When the null hypothesis is false, that is when γ01 ≠ 0 , then t is taken to have the noncentral t -
distribution with M – 2 – q degrees of freedom and noncentrality parameter

Comparing the noncentrality parameter of the design with imbalance and covariates to the 
balanced design (with the same number of treated clusters and no covariates), see that 

Thus the proportional effects of covariates and imbalance on design sensitivity are multiplicative
The effect of doubling or tripling sample size and covariates can double the noncentrality parameter 
or cut the MDES and standard error of the estimated treatment effect by half
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Combining Imbalance and Covariates:
Cluster Randomized Designs

Suppose that the number of clusters in the intervention group is fixed at mT, but the number in the 
comparison group is mC =cmT, there are q level 2 covariates, and the size of each cluster is n
The variance of the treatment effect estimate is therefore

The minimum detectable effect size in the unbalanced design is approximately

The ratio of MDES in unbalanced to balanced designs with covariates to balanced designs without 
covariates is approximately

( )( )2 2 2
2 1 2 1 2

1
MAU N T

cM R R n R
cm n

δ ρ−

+ = + − 
 

( )
( )

2 2 2
1 2 1 2

2

1
2 1 1

MAU

M

R R n Rc
c n

ρδ
δ ρ

 + −+  =   + −  

( ) ( )2 2 2
01 1 2 1 2ˆ

T C

TT C

m mSE R R n R
m m n

γ ρ σ
 +

= + −  
 



Cost Efficiency and Optimal Designs:
Cluster Randomized Designs

In cluster randomized designs, sensitivity depends on both number of cluster m and cluster size n
Designs with different configurations of m and n can therefore have the same sensitivity

For example, a design with m = 25 and n = 5 or m = 15 and n = 50 both have a MDES of 0.49
Similarly, a design with m = 30 and n = 10 or m = 40 and n = 50 both have a MDES of 0.34
Which design should be chosen?

One principle for making the choice is cost efficiency
Choose the design gives the greatest sensitivity for a fixed cost 
Personal view: This principle is helpful in informing design choices, but should never be followed 
blindly for two reasons:

-It can lead to obviously unwise choices in some cases 
-The cost models are used are simplistic and costs can only be crudely approximated



Linear Cost Model

Linear cost model
Assume costs of three  types:

Fixed costs of doing the experiment that do not depend (or depend weakly} on size (cost of 
principle investigator, administration, staff that supervise field operations, statistical analysis, etc.)

Variable costs that depend strongly on sample size (either m or n) are primarily he costs associated 
with field operations (e.g., recruitment, incentives, materials, and data collection)
The variable costs may be different for different levels of the design

Variable costs can be difficult to know exactly, but can often be estimated approximately based on 
experience and extrapolation



Variable Costs at the Cluster Level

Recruitment: Costs associated with obtaining agreement to participate in the experiment
-Travel to sites for research team members to explain the study (one or more trips)

-Expendable materials for use in recruiting
Incentives: Pure financial incentive costs are easy to calculate

-Replacement staff (e.g., if teachers need to be removed from classes to be trained)

-Costs of professional development (this can be substantial particularly if a treatment 
involves all the teachers in a schools)
-Materials for deferred adoption of treatment in control clusters (if offered)

Materials: Expendable material or equipment used in treatment 



Variable Costs at the Cluster Level

Data Collection: All costs of obtaining covariate, implementation, and outcome data
-Shipping assessment instruments to and from sites

-Obtaining covariate data at the site level
-Coordinating staff on site to facilitate data collection
-Travel costs for data collection personnel (collection of implementation data via 
observations is particularly costly)

-Costs for personnel doing qualitative studies of clusters
Feedback to clusters about progress and results (e.g., reports of each cluster’s performance)



Variable Costs at the Individual Level

Incentives: Any incentives provided to individuals e.g., students) who participate
Treatment itself: Books, hardware, software, materials needed for the treatment

Data collection: All costs of data collection that can be associated with the individual
-Consumable tests and scoring
-Staff time for interviews, individually administered tests, etc.



Linear Cost Model

Goal: To obtain greatest sensitivity for a fixed cost
Fixed costs do not matter

Compute the cost for each additional cluster: Call this c2

Compute the cost for each additional individual in an existing cluster: Call this c1

The total (variable) cost of  and experiment with m clusters per treatment of size n is 

C = 2mc2 + 2mnc1

Solving this equation for m yields m = C/(2nc1+2c2)
Inserting this expression for m into the expression for the variance of the treatment effect and 
maximizing for n (here C, c1, and c2 are fixed) yields nO the optimal n



Optimal Cluster Size:
Cluster Randomized Designs

With no covariates the optimal n has a surprisingly simple form

The qualitative implications are what you would expect

-The larger the (relative) cost of each cluster, (c2/c1) the larger nO becomes
-The larger the intraclass correlation, the smaller nO becomes

It is also useful to understand this in terms of the level 1 and level 2 variance components

Because  ρ2 is proportional to σ2
2 and 1 – ρ2  is proportional to σ1

2 then 

The larger the (relative) individual variance (σ1
2/ σ2

2), the larger nO becomes
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Optimal Cluster Sizes for Cluster Randomized Designs 
as a Function of c2 /c1 and ρ2

ρ2

c2 /c1 0.01 0.05 0.10 0.15 0.20 0.25
1 9.9 4.4 3.0 2.4 2.0 1.7
2 14.1 6.2 4.2 3.4 2.8 2.4
5 22.2 9.7 6.7 5.3 4.5 3.9

10 31.5 13.8 9.5 7.5 6.3 5.5
20 44.5 19.5 13.4 10.6 8.9 7.7
30 54.5 23.9 16.4 13.0 11.0 9.5
40 62.9 27.6 19.0 15.1 12.6 11.0
50 70.4 30.8 21.2 16.8 14.1 12.2
75 86.2 37.7 26.0 20.6 17.3 15.0

100 99.5 43.6 30.0 23.8 20.0 17.3



Optimal Design:
Cluster Randomized Designs

We obtain the m for the experiment by first picking nO and then selecting the m required to achieve 
the required design sensitivity
Note that optimal cluster sizes are not integers (rounding is obviously needed)

What surprises most researchers is how small the optimal cluster size often is
For example, if the relative cost of clusters is 10 times that of individuals and the intraclass 
correlation is  0.20, the optimal cluster size is 6
Few researchers would plan an experiment using only 6 students per school, many might think that 
20 – 50 students per school would be needed

The reason these results are possible is that design sensitivity depends so weakly on n



Optimal Cluster Size with Covariates:
Cluster Randomized Designs

With covariates the form of the optimal n is only slightly more complex

The qualitative implications are what you would expect

-The larger the (relative) cost of each cluster, (c2/c1) the larger nO becomes

-The larger the intraclass correlation, the smaller nO becomes
-The larger                              becomes, the larger nO becomes

As an empirical generalization, R2
2 is often bigger than R1

2, so 1 – R1
2 > 1 – R2

2

Therefore the use of covariates often increases nO
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Optimal Cluster Size with Covariates:
Cluster Randomized Designs

This can also be better understood in terms of adjusted variance components

The qualitative relationship with covariates is the same as that without covariates

-The larger the (relative) cost of each cluster, (c2/c1) the larger nO becomes

-The larger the (relative) covariate adjusted individual variance (σA1/ σA2
2), the larger nO

becomes
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Comments on Optimal Cluster Randomized 
Designs

Consider optimal design information as informative but not determinative
Small cluster sizes are dangerous: Loss of a few individuals can lead to loss of an entire cluster

Round up to have slightly larger clusters than are necessary

Design parameters (costs, intraclass correlation, and R2 values) used are often approximate
Work on robustness suggests that underestimation of intraclass correlations impairs efficiency more 
than overestimation, so assume slightly larger intraclass correlations than expected

The optimal design computed if the intraclass correlation is overestimated by 75%, is 90% as 
efficient as the truly optimal design



Design Parameters:
The Cluster Randomized Design

Design sensitivity of the cluster randomized design depends (for a given significance level and effect 
size) on three things:

-Sample sizes (mT, mC, and n)

-Covariate outcome correlations (if covariates are used) (R1
2 and R2

2)
-Intraclass correlation ρ2

These are called design parameters

Information about the design parameters R1
2 , R2

2 , and ρ2 is essential to plan cluster randomized 
experiments



The Multisite Design



The Multisite Design

The figure below illustrates the multisite design (also called the multisite individually randomized 
design)

In the language of experimental design, treatments (T) are crossed with sites (S) (every treatment 
appears in every site)

T1 T2

S1 S2 S1 S2



Why Use a Multisite Design?

Multisite designs are potentially more efficient than individually randomized designs
Multisite designs distribute the benefits of treatment more widely than cluster randomized designs 
(every site receives some treatment)

Multisite designs require a smaller commitment by sites to treatment than cluster randomized 
designs (not everyone gets randomized to treatment)
But
Multisite designs are administratively more complex

Contamination between treatment groups in the same site is a possibility
There may be practical, political, or theoretical  difficulties in assigning individuals in the same site 
to different treatments



Sites, Clusters, and Blocks

The term “site “ in this design can be misleading
In experimental design, this design is called the (generalized) randomized block design to 
emphasize that sites are a kind of block—a preexisting aggregate of individuals (you cannot, or do 
not, randomly assign individuals to blocks) 

Blocks may be sites like schools, clinics, or districts
Blocks may also be cohorts of individuals, randomization groups (when there are waves of 
randomization), grade levels, or treatment providers (therapists, specialists, etc.), or other matched 
groups of individuals
An extreme example is a design in which pairs of individuals are matched on covariates, then one of 
each pair is assigned to each treatment group—in this case the pairs are “sites”

Note that this design uses the design principles of matching and randomization



Fixed and Random Effects and Models for Generalization

Multisite designs introduce a conceptual complexity that does not arise in simpler designs (or it is 
obscured, as in cluster randomized designs)
What role should statistical inference play in the generalizations drawn from the study?

Alternatively, what, specific parameter are we estimating or testing hypotheses about?
(Statisticians would say, “What is the estimand?”)
In the multisite design there are at least two options:

1) Inferences are about the average treatment effect in the sites included in the 
experiment

2) Inference are about the average treatment effect in the (super)population of sites from 
which those in the experiment are a random sample



Fixed and Random Effects and Models for Generalization

Option #1 (infer to sites included in the experiment) is called the fixed effects estimand
Option #2 (infer to the superpopulation of sites) is called the random effects estimand

Because the statistical inference is about different parameters, the analyses required are different 
and so are the factors that determine design sensitivity
Both can be technically  correct, the choice must be based on extra-statistical considerations
Choosing requires addressing a deep issue of scientific methodology of the limits of statistical 
inference and its place in scientific inference



Inference and Generalization (Fixed Effects)

The formal statistical inference is about the average treatment effect in the sites included in the 
experiment
But we believe the inferences also apply (generalize to) a broader range of sites

Which sites?
Sites that are “sufficiently similar” to the sites in the experiment that they have the same effects
Sufficiently similar is either a tautology or an extra-statistical claim  that must be justified based on 
subject matter expertise

Statistical inference carries relatively little of the burden of inference to scientific conclusions
As we will see, the statistical inference is stronger (higher design sensitivity)



Inference and Generalization (Random Effects)

The formal statistical inference is about the average treatment effect in the (super)population of 
sites (sites in the experiment are a random sample from the superpopulation)
The statistical inferences also apply (generalize) to a broader range of sites

Which sites?
Sites that are included in the superpopulation from which observed sites are a random sample
Without probability sampling of sites, the definition of the superpopulation is a post hoc extra-
statistical construction that must be justified based on subject matter expertise

Statistical inference carries more of the burden of inference to scientific conclusions, but not all of it
As we will see, the statistical inference is also weaker (lower design sensitivity)



The Place of Experiments in Scientific Inference

Scientific inference involves drawing conclusions about the scope of applicability of conclusions 
drawn from a study
Scientific inference is a form of argument

Using language from Stephen Toulman’s theory of argumentation:
The study design and statistical inference provide part of the warrant for conclusions, but rarely if 
ever, is that warrant so strong that there are not potential objections that statistics cannot resolve
Those objections can only be resolved through subject matter considerations that are extra-
statistical



The Parable of the Two Bridges of Inference

In an important paper on experimental design, Cornfield and Tukey (1956) described two spans of 
the bridge of inference. They noted that:

Inference from the observations to the real conclusions has two parts, only the first of 
which is statistical
Take the simile of the bridge crossing a river by way of an island, there is a statistical span 
near the bank to the island, and a subject-matter span from the island to the far bank
By modifying [the experimental design and analysis] we can move the island nearer to or 
farther from the distant bank, and the statistical span can be made stronger or weaker
It is easy to forget the second span … yet a balanced understanding of, and choice among 
the statistical possibilities requires constant attention to the second span
It may often be worthwhile to move the island nearer to the distant bank, at the cost of 
weakening the statistical span—particularly when the subject-matter span is weak (p. 913)



Multisite Designs with Random Site Effects



Preview:
Multisite Design (Random Site Effects)

Recall the idea of simple main effects of treatments (site-specific treatment effects)

Let μT
a and μC

a be the treatment and control mean parameters in site a and let YT
a and YC

a be their 
estimates

Then the simple main effect parameter and estimate at site a are θa = μa
T – μa

C and Ta = Ya
T – Ya

C

When sites have random effects, sites are treated as a sample from a population of sites

Thus the simple main effect parameters (the θa) are a random sample from a population of effects

The estimand is not the mean of the θa‘s that are observed, but the mean of the entire population 
of θa‘s (including those that belong to sites that are not included in the experiment)
If the θa‘s in the experiment were observed, we would know that the mean of the θa‘s would be an 
estimate of the population mean of the θa‘s and the uncertainty of the sample mean would depend 
on the variance of the θa‘s



Preview:
Multisite Design (Random Site Effects)

In the multisite design, we do not observe any of the θa‘s directly (they are unknown parameters)
But we do observe estimates of the θa‘s (the Ta‘s)

It follows that the uncertainty of any estimate of the mean of the θa‘s using the Ta‘s must depend on 
the  uncertainty (variance) of the θa‘s
The fact that the variance of the treatment effect estimate depends on the variance of the θa‘s
makes the analysis of multisite designs with random site effects more complex
This fact also makes multisite designs with random site effects less sensitive than if site effects are 
fixed



Model and Notation: 
Multisite Design (Random Site Effects)

Suppose that there are m sites and the jth site assigns nj
T individuals to treatment and nj

C individuals 
to the control condition
This is a true multilevel model
If Yij is the ith level 1 unit in the jth level 2 unit , the level 1 (individual level) model is

Yij = β0j + β1j Tij + εij, and εij ~ N(0, σ1
2) 

where Ti = ± ½ is a treatment indicator variable.  The level 2 (site level) model is
β0j = γ00 +  η0j and η0j ~ N(0, σ2

2)
β1j = γ10 +  η1j and η1j ~ N(0, τ2

2)
Note that τ2

2 is the variance of the θa‘s (the simple main effect parameters)
As a one level model

Yij = γ00 + γ10Tij + η1jTij + η0j + εij,

Note that the residual terms (η1jTij + η0j + εij,) for observations in the same site are not independent



Effect Size:
Multisite Design (Random Site Effects)

The mathematically natural effect size in this design is

This is (almost) the same as in the completely randomized design but different than the cluster 
randomized design
This choice of effect size for this design is not universal (in the past I advocated using       

The two effect sizes are related via the intraclass correlation ρ2 = σ2
2/(σ1

2 + σ2
2)  = σ2

2/σT
2

However, given that  intraclass correlations are typically small ( ρ < 0.25), the two effect sizes are 
not very different 

For example , if ρ2 =  0.2, then
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Hypothesis Testing:
Multisite Design (Random Site Effects)

The test of the hypothesis that the treatment effect is zero, that is
H0: γ10 = 0

is based on the test statistic 

which is taken to have the t-distribution with m – 1 degrees of freedom
(The degrees of freedom with fixed site effects were larger: N – 2m = 2mn – 2m)
When the null hypothesis is false, that is γ10 ≠ 0, then the test statistic has the noncentral t-
distribution with m – 1 degrees of freedom and noncentrality parameter 

( )10 10ˆ ˆt SEγ γ=

( )10 10ˆSEλ γ γ=



Hypothesis Testing:
Multisite Design (Random Site Effects)

In a balanced design where all the nj
T = nj

C = n the standard error is 

where ω2
2 = τ2

2/σ1
2 is the variance of the θa divided by σ1 : The effect size variance

Note that this definition of is also not universal (in the past I advocated using ω2
2 = τ2

2/σ2
2 )

In an unbalanced design the standard error is more complex

In both cases the variance of the average treatment effect is the inverse of the sum of the inverse 
variances of the simple main effects
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Design Sensitivity: 
The Multisite Design (Random Site Effects)

Precision

When all the nj
T = nj

C = n , then

Statistical Power

power = 1 – F(tα/2 | df, λ) + F(- tα/2 | df, λ) 
where F(x| df, λ) is the cumulative distribution function of the noncentral t-distribution with df
degrees of freedom and noncentrality parameter λ
As an approximation, the noncentral t-distribution is approximately a translated central t-
distribution (i.e., with λ = 0), so F(x| df, λ) ≈ F(x – λ| df, 0) [works well if df and x are fairly large)
This approximation is helpful because you can compute with it in spreadsheets like EXCEL
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Approximate Minimal Detectable Effect Size:
Multisite Designs (Random Site Effects)

It is useful to have an algebraic approximation to the minimum detectable effect size

where Mdf is the constant depending on the degrees of freedom discussed before
Recall that Mdf is a decreasing function of df and Mf < 2.9 for df > 16

It might be surprising that the MDES does not involve the intraclass correlation, but only τ2
2 and σ1

2

(via ω2
2)

Recall that the treatment effect is a mean of simple main effects and the uncertainty of the simple 
main effect parameters depends on their variance (τ2

2) and the estimation error in Ta as an estimate 
of θa which depends on σ1

2

Another way to think about it is that the simple main effects are differences between site-specific 
means, both means contain the site effect, so the site effect disappears in the difference
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Design Sensitivity and Design Parameters:
Multisite Designs (Random Site Effects)

The approximate MDES shows us how sensitivity of the multisite design depends on design 
parameters

We see that δM is decreasing function of m and n and an increasing function of ω2
2

We also see that as m becomes large, δM tends to zero
Similarly, as ω2

2 becomes large, δM becomes large

But, like in cluster randomized designs, as n becomes large δM tends to a positive limit
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The Effect Size Variance ω2
2

Note that we have introduced another design parameter ω2
2

It may not be a parameter about which researchers have much experience or insight

The parameter ω2
2 is best understood as the effect size variance across sites

Recall that the simple main effect is θa = μa
T – μa

C thus θa /σ1 = (μa
T – μa

C)/σ1 is an effect size
The variance of θa /σ1 is ω2

2 = τ2
2/σ2

2 so ω2
2 is truly the variance of the simple main effect sizes

Values of ω2
2 depend on the treatment and the setting and they cannot be known or even 

estimated until the experiment is conducted

Empirical values of ω2
2 from experiments in education and social science range from 0 to about 

0.20, with the mean and median being about 0.12
Values of 0 are reported in about 30%-40% of experiments, but values of exactly 0 are somewhat 
suspect



MDES: Multisite Designs (Random Site Effects) as a 
Function of m, n, and ω2

2

ω2
2 ω2

2

m 0 0.05 0.1 0.15 0.25 0 0.05 0.1 0.15 0.25
n = 10 n = 20

5 0.76 0.85 0.93 1.00 1.13 0.54 0.66 0.76 0.85 1.00
6 0.65 0.72 0.79 0.85 0.97 0.46 0.56 0.65 0.72 0.85
7 0.57 0.64 0.70 0.76 0.86 0.41 0.50 0.57 0.64 0.76
8 0.52 0.58 0.64 0.69 0.78 0.37 0.45 0.52 0.58 0.69
9 0.48 0.54 0.59 0.64 0.72 0.34 0.42 0.48 0.54 0.64
10 0.45 0.50 0.55 0.59 0.67 0.32 0.39 0.45 0.50 0.59
15 0.35 0.39 0.43 0.47 0.53 0.25 0.31 0.35 0.39 0.47
20 0.30 0.34 0.37 0.40 0.45 0.21 0.26 0.30 0.34 0.40
25 0.27 0.30 0.32 0.35 0.40 0.19 0.23 0.27 0.30 0.35
30 0.24 0.27 0.29 0.32 0.36 0.17 0.21 0.24 0.27 0.32
40 0.21 0.23 0.25 0.27 0.31 0.15 0.18 0.21 0.23 0.27
50 0.19 0.21 0.23 0.24 0.28 0.13 0.16 0.19 0.21 0.24



Comparing MDES of the Multisite Design 
(Random Site Effects) to that of the Cluster 

Randomized Design
Recall that the approximate MDES of a balanced cluster randomized design with mn individuals in 
each treatment group is 

while the MDES of the multisite design with mn individuals in each treatment group is

Recalling that Mdf depends weakly on df, see that the primary difference is the term 2(n – 1)ρ2 
versus the term nω2

As an empirical finding (at least in the USA) ω2 (mean around 0.1) tends to be smaller than 2ρ2
(mean around  0.4), thus the multisite design tends to be considerably more sensitive

Moreover n tends to be smaller in multisite designs than in cluster randomized design (further 
increasing the sensitivity of the multisite design)
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Increasing Design Sensitivity:
Multisite Designs (Random Site Effects)

Design sensitivity can be increased by using covariates
Covariates can be added at either level 1 (the individual level) or level 2 (the site level)

The effect of a covariate at a particular level can be understood as decreasing the (effective) 
variance at that level

Because the relevant level 2 variance component  (ω2
2) may have the largest effect on uncertainty 

of the treatment effect, level 2 covariates will generally have the largest effect on design sensitivity
But

The relevant level 2 variance component (ω2
2 = τ2

2/σ1
2) is the effect size variance—the function of 

the covariate is to explain this effect size variance (not outcome variance)
There is much less scientific knowledge about covariates that explain treatment effect variance than 
about covariates that explain outcomes



Model and Notation:
Multisite Design (Random Site Effects)

Suppose there are q1 level 1 covariates and q2 level 1 covariates 
If Yij is the ith level 1 unit in the jth level 2 unit , the level 1 (individual level) model (one covariate) is

Yij = β0j
A + β1j

ATij + β2j
AXij + εij

A, εij
A ~ N(0, σA1

2)
where Ti = ± ½ is a treatment indicator variable.  The level 2 (site level) model (one covariate) is

β0j
A = γ00

A + γ01
AWj + η0j

A and η0j 
A ~ N(0, σA2

2) 
β1j

A = γ10
A + γ11

AWj + η1j
A and η1j

A ~ N(0, τA2
2)

β2j
A = γ20

A, 
As a one level model

Yij = γ00
A + γ10

ATij + γ01
AW1 + γ11

AWjTij + γ20
AXij + η1j

ATij + η0j
A + εij

A

Average treatment effect



Hypothesis Testing: 
Multisite Design (Random Site Effects)

The test of the hypothesis that the treatment effect is zero, that is
H0: γ10

A = 0
is based on the test statistic 

which is taken to have the t-distribution with m – 1 – q2 degrees of freedom, where q2 is the 
number of level 2 (site level) covariates
When the null hypothesis is false, that is when γ10

A ≠ 0 , then t is taken to have the noncentral t -
distribution with m – 1 – q2 degrees of freedom and noncentrality parameter

In a balanced design with all of the nj
C and nj

C equal to n, the covariate adjusted standard error is

( )10 10ˆ ˆA At SEγ γ=

( )10 10ˆA A
A SEλ γ γ=

( )
2 2 2 22 22 2 2 1 12 1

10

22ˆ A A A
nQ RnSE

mn mn
ω στ σγ

 ++    = = 



Hypothesis Testing: 
Multisite Design (Random Site Effects)

The test of the hypothesis that the treatment effect is zero, that is
H0: γ10

A = 0
is based on the test statistic 

which is taken to have the t-distribution with m – 1 – q2 degrees of freedom, where q2 is the 
number of level 2 (site level) covariates
When the null hypothesis is false, that is when γ10

A ≠ 0 , then t is taken to have the noncentral t -
distribution with m – 1 – q2 degrees of freedom and noncentrality parameter

In a balanced design with all of the nj
C and nj

C equal to n, the covariate adjusted standard error is

( )10 10ˆ ˆA At SEγ γ=

( )10 10ˆA A
A SEλ γ γ=

( ) ( ) ( )2 2 2 22 22 2 2 1 12 1
10

1 2 12ˆ A A A
n Q RnSE

mn mn

ω στ σγ
 − + −+    = = 

We use Q2
2 rather than R2

2 to emphasize that this is
explained variation in treatment effects, not outcome



Comparing Design Sensitivity with and without 
Covariates:

Multisite Design (Random Site Effects)
Comparing the covariate adjusted to the unadjusted noncentrality parameters in a balanced design 
where all of the nj

C and nj
C are of size n, see that 

where  R1
2 = 1 – σA1

2/σA
2 and Q2

2 = 1 – τA2
2/ τ2

2 is the amount of variance across sites in treatment 
effects that is explained by covariates
This expression shows that using covariates increases  and therefore statistical power, but 
qualitative generalizations are not obvious because the two terms in numerator and denominator 
are likely to be of about the same magnitude (neither can be neglected)

( ) ( )
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2
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+
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Design Sensitivity: 
Multisite Design with Covariates (Random Site 

Effects)
Precision

When all the treatment and control clusters are of size n, then

Statistical Power

power = 1 – F(tα/2 | df, λ) + F(- tα/2 | df, λ) 
where F(x| df, λ) is the cumulative distribution function of the noncentral t-distribution with df
degrees of freedom and noncentrality parameter λ
As an approximation, the noncentral t-distribution is approximately a translated central t-
distribution (i.e., with λ = 0), so F(x| df, λ) ≈ F(x – λ| df, 0) [works well if df and x are fairly large)
This approximation is helpful because you can compute with it in spreadsheets like EXCEL

( )
2 2 2 2
2 2 1 1

10

2
ˆ A
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ω σ
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Approximate Minimal Detectable Effect Size:
Multisite Design with Covariates (Random Site 

Effects)
The algebraic approximation to the minimum detectable effect size in a balanced design where all 
of the nj

C and nj
C are of size n is

where Mdf is the constant depending on the degrees of freedom discussed before
Recall that Mdf is a decreasing function of df and Mf < 2.9 for df > 16

( ) ( )2 2 2
2 2 1

1 2

1 2 1
M m q

n Q R
M

mn
ω

δ − −

− + −
≈



MDES as a Function of m in a Multisite Design (Random Site Effects)

R1 = 0.3

R1 = 0.5

R1 = 0.7

Q1 = 0.3 Q1 = 0.5 Q1 = 0.7



Unbalanced Allocation in Multisite Designs (Random Site Effects)

Suppose that the number of individuals allocated to treatment in the intervention group is fixed at
nT, but the number in the comparison group is not, i.e., nC = cnT, for some 𝑐𝑐 ≥ 1
The variance of the treatment effect estimate is therefore

The degrees of freedom of the test statistic are unchanged (m – 1) but the noncentrality parameter 
becomes

Note that as c tends to infinity, the limiting power is not 1 but is determined by the limiting λ value

( )
2
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Unbalanced Allocation in Multisite Designs (Random Site Effects)

The minimum detectable effect size in the unbalanced design is approximately

Note that as c tends to infinity, the limiting value of δMU is not zero but

the  last approximation because nTω2
2 is typically considerably larger than 1

2
2

1
1T

MU m T
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Combining Unbalanced Allocation and Covariates:
Multisite Design (Random Site Effects)

Combining unbalanced allocation and covariates, the standard error of the treatment effect is 

The test statistic has m – 1 – q2 degrees of freedom and noncentrality parameter

The approximate minimum detectable effect size is 

( ) ( ) ( ) ( ) ( )( )2 2 2 22 2 2 2
2 2 2 1 12 2 1 1 1 1 11 ( 1) 1

ˆ
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cn Q c RQ c R
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Modeling Site-Treatment Interactions
Multisite Design (Random Site Effects)

In our specification of the model, we included both site effects and site treatment interactions via 
random effects
This is unequivocally correct if the effect size variance is zero

An alternative analysis that is sometimes used is to include dummy variables for sites, so-called “site 
fixed effects” and then analyze the data using ordinary least squares regression
When sites have random effects, this badly inflates the significance levels of the test for treatment 
effects

When the effect size variance is modest (ω2
2 = 0.10) the actual rejection rate of the test with a 

nominal 0.05 (5%) significance level can be 25% 

The next figure illustrates the magnitude of the problem



Actual Significance Levels of Nominal 0.05 Level Tests
(Multisite Design with Random Site Effects)

From Chan and Hedges (in press)

Here σγ
2 = ω2

2



Modeling Site-Treatment Interactions in
Multisite Designs (Random Site Effects)

Because the site fixed effects analysis is unequivocally correct if effect size variance is exactly zero, 
one might think that we could simply test for this variance
In other words, first test to see if the effect size variance is nonzero—if we find no effect size 
variance then use the site fixed effects model

Unfortunately, even the optimal test for effect size variance is not very powerful
Effect size variance that is large enough to seriously compromise the test for the treatment effect 
are essentially undetectable 
The next slide shows the power of the test for effect size variance for plausible multisite designs



Minimum Detectable Effect Size Variance as a Function of m and n: 
Multisite Design (Random Site Effects)

Sites Random Sites Fixed



Cost Efficiency and Optimal Designs

In multisite designs with random site effects, just as in cluster randomized designs, design sensitivity 
depends on both m and n and designs with different configurations of m and n can yield the same 
sensitivity

Yet costs depend differently on m and n so it is sensible to ask what designs achieve the greatest 
sensitivity for a fixed cost

Compute the cost for each additional site: Call this c2

Compute the cost for each additional individual in an existing site: Call this c1

The total (variable) cost of  and experiment with m clusters per treatment of size n is 

C = mc2 + 2mnc1

Solving this equation for m yields m = C/(2nc1+c2)
Inserting this expression for m into the expression for the variance of the treatment effect and 
maximizing for n (here C, c1, and c2 are fixed) yields nO the optimal n



Optimal Allocation within Sites:
Multisite Design (Random Site Effects)

With no covariates the optimal n has a surprisingly simple form

The qualitative implications are what you would expect

-The larger the (relative) cost of each cluster, (c2/c1) the larger nO becomes
-The larger the effect size variance, the smaller nO becomes

It is also useful to understand this in terms of the level 1 and level 2 variance components

Because  ω2 = τ2
2/ σ1

2 then 

The larger the (relative) individual variance (σ1
2/ τ2

2), the larger nO becomes

2
21 2

1
2O
cn
c ω
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Optimal Allocations as a Function of c2 /c1 and ω2
2:

Multisite Design (Random Site Effects)
ω2

2

c2/c1 0.01 0.05 0.10 0.15 0.20 0.25
1 7.1 3.2 2.2 1.8 1.6 1.4
2 10.0 4.5 3.2 2.6 2.2 2.0
5 15.8 7.1 5.0 4.1 3.5 3.2

10 22.4 10.0 7.1 5.8 5.0 4.5
20 31.6 14.1 10.0 8.2 7.1 6.3
30 38.7 17.3 12.2 10.0 8.7 7.7
40 44.7 20.0 14.1 11.5 10.0 8.9
50 50.0 22.4 15.8 12.9 11.2 10.0
75 61.2 27.4 19.4 15.8 13.7 12.2

100 70.7 31.6 22.4 18.3 15.8 14.1



Optimal Allocation within Sites with Covariates:
Multisite Design (Random Site Effects)

With covariates the form of the optimal n is only slightly more complex

The qualitative implications are what you would expect

-The larger the (relative) cost of each cluster, (c2/c1) the larger nO becomes

-The larger the effect size variance, the smaller nO becomes
-The larger                               becomes, the larger nO becomes

As an empirical generalization, R1
2 is often bigger than Q2

2, so 1 – R1
2 < 1 – Q2

2

Therefore the use of covariates often decreases nO

( )
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Obtaining the Optimal Design:
Multisite Design (Random Site Effects)

We obtain the m for the experiment by first picking nO and then selecting the m required to achieve 
the required design sensitivity
Note that optimal allocations are not integers (rounding is obviously needed)

What surprises most researchers is how small the optimal allocation often is
For example, if the relative cost of sites is 10 times that of individuals and the effect size variance is  
0.10, the optimal cluster size is 7
Few researchers would plan an experiment using only 7 students per school to each treatment 
group, many might think that 25 – 30 students per school for each treatment would be needed

The reason these results are possible is that design sensitivity depends weakly on n (but the 
dependence is stronger than in cluster randomized designs)



Using Optimal Design Information

Optimal design calculations should inform but not completely determine design choices
Optimal designs often have very small allocations that are practically difficult to achieve because 
they involve singling out small groups of individuals for treatment and assessment of outcomes

Very small optimal allocations may be unwise to use because loss of those few individuals can result 
in loss of an entire site from the analysis (which can lead to serious reductions in design sensitivity)
Even if attrition of individuals does not lead to loss of sites, sites with very small numbers of 
individuals can also lead to severe imbalance that can cause serious reductions in design sensitivity



Design Parameters:
Multisite Design (Random Site Effects)

Design sensitivity of the cluster randomized design depends (for a given significance level and effect 
size) on three things:

-Sample sizes (m, nT, and nC)

-Covariate outcome correlation at level 1 (if covariates are used) (R1
2)

-Covariate treatment effect correlation (Q2
2)

These are called design parameters

Information about the design parameters R1
2 and Q2

2 is essential to plan multisite experiments with 
random site effects



What Effect Sizes are Reasonable?



Effect Size Conventions According to Cohen and Lipsey

Cohen                       Lipsey
(speculative)                                (empirical)

____________________________________________

Small  =  0.2            Small = 0.15
Medium =  0.5 Medium = 0.45

Large  =  0.8           Large = 0.90



Five-year Impacts of the Tennessee Class-size Experiment

Treatment:
13-17 versus 22-26 students per class

Effect sizes:
0.11 to 0.22 for reading and math

Findings are summarized from Nye, B., Hedges, L. V., & Konstantopoulos, S. (1999). 
The Long-Term Effects of Small Classes: A Five-Year Follow-up of the Tennessee Class 
Size Experiment. Educational Evaluation and Policy Analysis, 21, 127-142.



Annual Reading and Math Growth
Reading Math

Grade                  Growth    Growth
Transition          Effect Size Effect Size 
________________________________________

K - 1 1.52 1.14
1 - 2                      0.97                    1.03                  
2 - 3                       0.60                    0.89
3 - 4                       0.36                    0.52
4 - 5                       0.40                    0.56
5 - 6                       0.32                    0.41
6 - 7                       0.23                    0.30
7 - 8                       0.26                    0.32
8 - 9                       0.24                    0.22
9 - 10                     0.19                    0.25
10 - 11                   0.19                    0.14
11 - 12                   0.06                    0.01

________________________________________
Based on work in progress using documentation on the national norming samples for the CAT5, 

SAT9, Terra Nova CTBS, Gates MacGinitie (for reading only), MAT8, Terra Nova CAT, and SAT10. 
95% confidence intervals range in reading from +/- .03 to .15 and in math from +/- .03 to .22 



Effect Size of Performance Gap Between 50th Percentile and 10th

Percentile Schools
Subject and 
grade District I District II District III District IV
Reading

Grade 3 0.31 0.18 0.16 0.43
Grade 5 0.41 0.18 0.35 0.31
Grade 7 .025 0.11 0.30 NA
Grade 10 0.07 0.11 NA NA

Math
Grade 3 0.29 0.25 0.19 0.41
Grade 5 0.27 0.23 0.36 0.26
Grade 7 0.20 0.15 0.23 NA
Grade 10 0.14 0.17 NA NA

Source: Bloom et al. District I outcomes are based on ITBS scaled scores, District II on SAT 9 scaled 
scores, District III on MAT NCE scores, and District IV on SAT 8 NCE scores. 



Demographic Performance Gap in Reading and Math: NAEP Scores

Subject and 
grade

Black-
White

Hispanic-
White

Male-
Female

Eligible-
Ineligible for 
free/reduced 

price lunch
Reading

Grade 4 -0.83 -0.77 -0.18 -0.74
Grade 8 -0.80 -0.76 -0.28 -0.66
Grade 12 -0.67 -0.53 -0.44 -0.45

Math
Grade 4 -0.99 -0.85 0.08 -0.85
Grade 8 -1.04 -0.82 0.04 -0.80
Grade 12 -0.94 -0.68 0.09 -0.72

Source: U.S. Department of Education, Institute of Education Sciences, National Center for Education Statistics, 
National Assessment of Educational Progress (NAEP), 2002 Reading Assessment and 2000 Mathematics Assessment.



Effect Size Results from Randomized Studies

Achievement Measure n Mean

Elementary School 389 0.33

Standardized test (Broad) 21 0.07

Standardized test (Narrow) 181 0.23

Specialized Topic/Test 180 0.44

Middle Schools 36 0.51

High Schools 43 0.27



How Do We Get Information About Design 
Parameters Such as ρ or R2



Empirical Questions about the Predictive Power of Covariates

• What values of intraclass correlations ρ are reasonable?

• What values of R1
2 and R2

2 are reasonable?

• How useful are school-level versus student-level pretests?

• How useful are earlier vs. later follow-up years

• Do reading and math achievement behave differently?

• Do earlier and later grades behave differently? 



Three Empirical Strategies

Look at national probability samples

Look at large school districts

Look at state census (state assessment) data



National Intraclass Correlations in Reading 
Achievement (K - 6)

 
No 

Covariates  
Demographic 

Covariates  Pretest Covariate 
Grade ρ  R2

2 R1
2  R2

2 R1
2 

        
K 0.233  0.434 0.081  0.742 0.621 
        

1 0.239  0.608 0.084  0.790 0.640 
        

2 0.204  0.559 0.110  0.830 0.522 
        

3 0.271  0.741 0.079  0.759 0.478 
        

4 0.242  0.704 0.100  0.812 0.540 
        

5 0.263  0.798 0.101  0.830 0.565 
        

6 0.260  0.634 0.076  0.882 0.510 
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National Intraclass Correlations in Reading 
Achievement (7 - 12)

 
No 

Covariates  
Demographic 

Covariates  Pretest Covariate 
Grade ρ  R2

2 R1
2  R2

2 R1
2 

7 0.174  --- ---  --- --- 
        

8 0.197  --- ---  --- --- 
        

9 0.250  0.424 0.111  0.349 0.459 
        

10 0.183  0.717 0.093  0.856 0.529 
        

12 0.174  0.748 0.091  0.892 0.617 
        

M = 0.224  0.665 0.092  0.774 0.548 
a = 0.251  0.691 0.089  0.790 0.566 
b = -0.005  0.013 0.001  -0.003 -0.004 
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National Intraclass Correlations in Mathematics 
Achievement (K - 6)

 
No 

Covariates  
Demographic 

Covariates  
Pretest 

Covariate 
Grade ρ   R2

2 R1
2   R2

2 R1
2 

        
K 0.243  0.616 0.080  0.857 0.621 
        
1 0.228  0.614 0.079  0.823 0.624 
        
2 0.236  0.436 0.0.88  0.676 0.505 
        
3 0.241  0.639 0.088  0.805 0.594 
        
4 0.232  0.435 0.066  0.679 0.485 
        
5 0.216  0.442 0.072  0.632 0.506 
        
6 0.264  0.117 0.069  0.740 0.502 
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National Intraclass Correlations in Mathematics 
Achievement (7 - 12)

 
No 

Covariates  
Demographic 

Covariates  
Pretest 

Covariate 
Grade ρ  R2

2 R1
2  R2

2 R1
2 

7 0.191  0.638 0.096  --- --- 
        

8 0.185  0.433 0.084  0.822 0.653 
        

9 0.216  0.523 0.097  0.895 0.724 
        

10 0.234  0.78 0.092  0.919 0.649 
        

11 0.138  0.739 0.121  0.835 0.73 
        

12 0.239  0.782 0.102  0.975 0.798 
        

M = 0.220  0.447 0.087  0.805 0.616 
a = 0.242  0.460 0.083  0.276 0.482 
b = -0.004  0.016 0.002  0.014 0.017 

 


		

		No Covariates

		

		Demographic Covariates

		

		Pretest Covariate



		Grade

		ρ

		

		R22

		R12

		

		R22

		R12



		7

		0.191

		

		0.638

		0.096

		

		---

		---



		

		

		

		

		

		

		

		



		8

		0.185

		

		0.433

		0.084

		

		0.822

		0.653



		

		

		

		

		

		

		

		



		9

		0.216

		

		0.523

		0.097

		

		0.895

		0.724



		

		

		

		

		

		

		

		



		10

		0.234

		

		0.78

		0.092

		

		0.919

		0.649



		

		

		

		

		

		

		

		



		11

		0.138

		

		0.739

		0.121

		

		0.835

		0.73



		

		

		

		

		

		

		

		



		12

		0.239

		

		0.782

		0.102

		

		0.975

		0.798



		

		

		

		

		

		

		

		



		M =

		0.220

		

		0.447

		0.087

		

		0.805

		0.616



		a =

		0.242

		

		0.460

		0.083

		

		0.276

		0.482



		b =

		-0.004

		

		0.016

		0.002

		

		0.014

		0.017







Empirical Analysis (District Sample)

• Estimate ρ, R2
2 and R1

2 from data on students from a sample of schools, during 
multiple years at five urban school districts

• Summarize these estimates for reading and math in grades 3, 5, 8 and 10

• Compute implications for minimum detectable effect sizes



Estimated Parameters for Reading with a School-level Pretest 
Lagged One Year

________________________________________________________________                                                          
School District

________________________________________________________
A                     B                    C                   D                    E

________________________________________________________________
Grade 3    

ρ 0.20               0.15                0.19              0.22                0.16
R2

2 0.31               0.77                0.74              0.51                0.75
Grade 5

ρ 0.25              0.15                0.20                NA                0.12
R2

2 0.33              0.50                0.81                NA                0.70
Grade 8

ρ 0.18              NA                 0.23                 NA                 NA
R2

2 0.77              NA                 0.91                 NA                 NA
Grade 10

ρ 0.15              NA                 0.29                 NA                 NA
R2

2 0.93              NA                 0.95                 NA                 NA
_________________________________________________________________



Minimum Detectable Effect Sizes for Reading with a School-Level 
or Student-Level Pretest Lagged One Year 

___________________________________________________
Grade 3       Grade 5        Grade 8        Grade 10

__________________________________________________
40 schools randomized
No covariate

0.39               0.38               0.42               0.42

School Level

0.26               0.26               0.17               0.11

Student Level

0.26               0.27               0.19               0.10
___________________________________________________



Empirical Analysis (State Census)

• Estimate ρ2, ρ3, R3
2, R2

2, and R1
2 from data on students from all schools in a state 

and subsets of the state using a three level model (students, schools, districts)

• Summarize these estimates for reading and math in all grades available

• Compute implications for minimum detectable effect sizes



Searchable Website

There is a website with empirical estimates of design parameters for the nation and 11 states 
(whose development was supported by IES and NSF)

It is searchable by subject matter, grade, state, subset of the state (e.g., low SES, low achievement, 
etc.)

http://stateva.ci.northwestern.edu/?_gl=1*1rzbp2t*_ga*OTYxNTA0NzAxLjE2NDkyMDA2MzU.*_ga_
W4YV5ZK52D*MTY1NTgzNjg4OS4xLjEuMTY1NTgzNjkxNS4zNA.. 

Design parameters from more states and more different kinds of design parameters are being 
added as we get them

http://stateva.ci.northwestern.edu/?_gl=1*1rzbp2t*_ga*OTYxNTA0NzAxLjE2NDkyMDA2MzU.*_ga_W4YV5ZK52D*MTY1NTgzNjg4OS4xLjEuMTY1NTgzNjkxNS4zNA


Key Findings

• Using a pretest improves precision dramatically.
• This improvement increases appreciably from elementary 

school to middle school to high school because R2
2 increases.

• School-level pretests produce as much precision as do 
student-level pretests.

• The effect of a pretest declines somewhat as the time 
between it and the post-test increases.

• Adding a second pretest increases precision slightly.
• Using a pretest for a different subject increases precision 

substantially.
• Narrowing the sample to schools that are similar to each other 

does not improve precision beyond that achieved by a pretest.
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Subgroup (Moderator) Effects



Subgroup (Moderator) Effects

We often want to know if the treatment effects are different for some subgroup of subjects

This is often called a moderator analysis where the variable defining the subgroups is the 
moderator variable

The sensitivity of analyses of moderator effects depends on whether the moderator is a property of 
the groups (clusters or sites) or the individuals within groups

Cluster/site level moderators include characteristics of those sites or assigned variations of 
treatment (not observed variations of treatment)

Individual level moderators include characteristics of subjects or assigned (to subjects) variations of 
treatment (not observed variations of treatment)



Subgroup (Moderator) Effects

Analyses of the effects of cluster/site level moderators compare the effects of a sub-experiment 
having one value of the moderator with a sub-experiment having a different value of the moderator

Therefore analyses of the effects of cluster/site level moderators are less sensitive than analyses of 
the main (overall mean) effect of treatment—often much less sensitive

Analyses of the effects of cluster/site level moderators compare the effects within clusters/sites of 
subjects having one value of the moderator with subjects having a different value of the moderator

Therefore analyses of the effects of cluster/site level moderators are not less sensitive than analyses 
of the main (overall mean) effect of treatment—they can even be more sensitive



Must We Match Sampling 
and Analysis Models?



The Issue

General Question: What happens when you design 
a study with randomized groups that comprise 
three levels based on data which do not account 
explicitly for the middle level? 

Specific Example: What happens when you design a 
study that randomizes schools (with students 
clustered in classrooms in schools) based on data 
for students clustered in schools? 



Short Answer
Ignoring the top randomized level (e.g., schools) is never OK

Ignoring a middle level in the analysis has no impact on the accuracy of significance tests in a 
balanced design

Ignoring a middle level in the analysis has little impact on the accuracy of significance tests in most 
unbalanced designs

Variance component estimates for both levels may be biased

The power of the two level analysis is therefore tricky to calculate

Thus specifying sample sizes for the design can be tricky



How Can it be OK to Omit a Level?

The analysis of cluster randomized trials does a t-test on cluster means

If there is two-level sampling, the cluster means have variance

(σT
2/n)[1 + (n – 1)ρ3]

If there is three-level sampling, (p subclusters per clusters, n individuals per subcluster) the cluster 
means have variance

(σT
2/pn) [1 + (pn – 1)ρ3 + (n – 1)ρ2]

The key point is that the assumptions of the t-test are still valid—cluster means are independent 
and have identical variances (in balanced designs), but the precision is different



Example: 3-level vs. 2-level MDES

Outcomes Unconditional Conditional Unconditional Conditional
Expressive Vocabulary (Spring) 0.482 0.386 0.495 0.311

Stanford 9 Total Math Scaled Score                                  0.259 0.184 0.259 0.184

Stanford 9 Total Reading Scaled Score                                0.261 0.148 0.264 0.150
Sources: The Chicago Literacy Initiative: Making Better Early Readers study (CLIMBERs) database and the School Breakfast Pilot Project (SBPP) d  

MDES
3-Level Model 2-Level Model


variance components

		

				Table.  3-level vs. 2-level Model Comparison (1): Non-Standardized Uncondistional Variance Components

								Variance Components

								3-Level Model										2-Level Model

				Outcomes				School		Class		Student		Total				School				Student		Total

				Expressive vocab-spring				19.84		32.45		306.18		358.48				38.15				321.11		359.26

				Stanford 9 Total Math Scaled Score				115.14		36.40		1273.15		1424.69				131.39				1293.24		1424.63

				Stanford 9 Total Reading Scaled Score				108.75		158.95		1581.86		1849.56				181.77				1666.48		1848.25

				Sources: The Chicago Literacy Initiative: Making Better Early Readers study (CLIMBERs) database and the School Breakfast Pilot Project (SBPP) database.





mdes

		

				Table . 3-level vs. 2-level Model Comparison (2): MDES

								MDES

								3-Level Model								2-Level Model

				Outcomes				Unconditional				Conditional				Unconditional				Conditional

				Expressive Vocabulary (Spring)				0.482				0.386				0.495				0.311

				Stanford 9 Total Math Scaled Score				0.259				0.184				0.259				0.184

				Stanford 9 Total Reading Scaled Score				0.261				0.148				0.264				0.150

				Sources: The Chicago Literacy Initiative: Making Better Early Readers study (CLIMBERs) database and the School Breakfast Pilot Project (SBPP) database.
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Variance Component Estimates: 3-level vs. 2-level Analyses 

Outcomes School Class Student Total School Student Total

Expressive Vocabulary (Spring) 19.84 32.45 306.18 358.48 38.15 321.11 359.26

Stanford 9 Total Math Scaled Score                                  115.14 36.40 1273.15 1424.69 131.39 1293.24 1424.63

Stanford 9 Total Reading Scaled Score                                108.75 158.95 1581.86 1849.56 181.77 1666.48 1848.25

Sources: The Chicago Literacy Initiative: Making Better Early Readers study (CLIMBERs) database and the School Breakfast Pilot Project (SBPP) datab  

Variance Components
3-Level Model 2-Level Model


variance components

		

				Table.  3-level vs. 2-level Model Comparison (1): Non-Standardized Uncondistional Variance Components

								Variance Components

								3-Level Model										2-Level Model

				Outcomes				School		Class		Student		Total				School				Student		Total

				Expressive Vocabulary (Spring)				19.84		32.45		306.18		358.48				38.15				321.11		359.26

				Stanford 9 Total Math Scaled Score				115.14		36.40		1273.15		1424.69				131.39				1293.24		1424.63

				Stanford 9 Total Reading Scaled Score				108.75		158.95		1581.86		1849.56				181.77				1666.48		1848.25

				Sources: The Chicago Literacy Initiative: Making Better Early Readers study (CLIMBERs) database and the School Breakfast Pilot Project (SBPP) database.





mdes

		

				Table . 3-level vs. 2-level Model Comparison (2): MDES

								MDES

								3-Level Model								2-Level Model

				Outcomes				Unconditional				Conditional				Unconditional				Conditional

				Expressive vocab-spring				0.482				0.386				0.495				0.311

				Stanford9 Total Math Scale Score				0.259				0.184				0.259				0.184

				Stanford9 Total Reading Scale Score				0.261				0.148				0.264				0.150

				Sources: The Chicago Literacy Initiative: Making Better Early Readers study (CLIMBERs) database and the School Breakfast Pilot Project (SBPP) database.
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Thank You!
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