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Topics  for Today

1. Planning a research design

2. Design sensitivity

3. Choosing a particular design

4. Planning cluster randomized designs

5. Planning multis ite (randomized block) designs

6. Is  it ever OK to ignore levels  of sampling in our analyses?



Res earch Des ign is  an Ite rative  Proces s

Research design is  an iterative process:

1. First you consider what is  possible and feasible

2. Then you evaluate sensitivity

3. Finding that it is  too small you see if you can change the design to improve sensitivity

4. You may re-evaluate what is  possible and feasible

5. …

Obvious design changes could be adding covariates  or introducing imbalance, if tha t enables  
a  la rge r tota l s ample  s ize

Design changes can often involve implementing the design in cohorts  (year 1, year 2)



Planning a  Des ign

Planning a design is  creating a data collection protocol that has adequate sensitivity to detect 
the effect s ize expected or the smallest meaningful effect s ize

Remember that the design must be adequately sensitive to yield unambiguous results

So far that means finding a sample size that has adequate sensitivity

If resources are unlimited, this  means simply obtaining an adequate sample size (look at a 
graph or a table of power values)

Resources (budget) are essentially a lways limited in research

This reality makes design a more difficult problem



Improving Des ign Sens itivity

Design sensitivity (holding significance level constant) in any design depends on effect s ize, 
sample size(s), and certain other design parameters  which are different for different designs

Thus, to increase design sensitivity we can: Increase sample size(s), reduce variation (which 
increases the effective effect s ize, or change the design

While the effect s ize of a treatment may not easily be increased, use of covariates  can reduce 
variation so that the “effective” effect s ize is  increased

Similarly, changing the design (e.g., introducing matching or blocking) may reduce variation

Depending on constraints  there may be ways of increasing sample size by planned imbalance



There  is  Always  Potentia l Confounding

Practical considerations often push us towards larger sample sizes

Larger sample sizes increase sensitivity but often introduce variation

More variation can introduce possible confounding

Example: To get more schools  you may need several districts  (or regions or states)—Are 
districts  blocks are do they have random effects?  

More schools  increases sensitivity, but if districts  have random effects  that does that  
decreas e sensitivity?



We Have  Focus ed on Three  Bas ic  Des igns :
The  Clus te r Randomized Des ign, 

the  Multi-s ite  Individually Randomized Des ign,  
the  Multis ite  Clus te r Randomized Des ign

Why choose one versus the other?

Is  one design more sensitive than the other (for a fixed sample size)?

Are there other reasons to choose versus the other?



Genera l Principles

Randomization at the  lowes t leve l pos s ible  gives  the  greates t des ign s ens itivity

Generally: 
Individually randomized designs are more sensitive than multis ite individually randomized 
designs which are more sensitive than cluster randomized designs

Why?
(This is  not obvious)



To Unders tand This  Think About Variance

Compare the individually randomized design with sample size N = 2mn to a cluster randomized 
design with a sample size of N = 2mn (m clusters  pretreatment with n observations per cluster)

The total variance of an individual observation in either design is  σT
2 = σ1

2 + σ2
2

In both designs the treatment effect is  a mean difference

The variance of the mean difference in the individually randomized design is

The variance of the mean difference in the cluster randomized design is
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Inte rpre tation

The same components  of variance exist in the observations 

We reduce variance in the treatment group means by averaging

Randomization of individuals  allows us to average eve ry component of variance over a ll 
observations in each group

Randomization over clusters  means that the cluster-specific component of variance is  only 
ave raged ove r m the number of c lus te rs , not mn, the number of observations in each group

Different research designs partition the variance so that different components  of variance 
contributed to the variance (the uncertainty )of the treatment



Compare  Multis ite  Individual Randomization to 
Clus te r Randomization

Compare the individually multis ite individually randomized design with sample size N = 2mn (m 
s ites  with n individuals  per treatment per s ite) to a cluster randomized design with a sample 
size of N = 2mn (m clusters  per treatment with n observations per cluster) 

The total variance of an individual observation is  σT
2 = σ1

2 + σ2′
2 + τ2

2 

In both designs the treatment effect is  a mean difference

The variance of the mean difference in the individually randomized design is  (as  before)
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Why Clus te r Randomization?

Cluster randomization is  less  efficient (leads to less  sensitive designs) than individual 
randomization

So why randomize  c lus te rs?

Assignment of individuals  to treatments  independently is  sometimes imprac tica l, unfeas ible , 
or impos s ible

For example :

It is  impractical  to assign students  in the same classroom to different curricula, have different 
duty rules for interns supervised in the same clinic

It may be politically difficult to assign only some students  (or teachers) in a school to a much 
more desirable treatment

It is  theoretically impossible to assign aggregate treatments  to different individuals  within the 
same aggregate (e.g., while school behavior support, whole school trust interventions)



Why Clus te r Randomization?

Contamination between treatment and control groups is  sometimes a concern

This could be inadvertent or intentional

For example

Control teachers might learn of new teaching methods from their colleagues in the treatment 
group

Students  in a tutoring intervention might bring their untutored peers  to their tutoring sessions, 
intentionally subverting the experiment

Parents  in the same school might insist that their children assigned to the control group 
receive the treatment



What is  the  Alte rnative  to Clus te r Randomization?

The multis ite individually randomized (randomized block) design is  an alternative you know

Compare the two designs with total sample size N = 2mn:

 -For the CRT m clusters  of s ize n assigned to each treatment group

 -For the MSIRT m s ites  with n individuals  assigned to each treatment at each site

 

Compute the (approximate) minimum detectable effect s ize for each design



Comparing Minimum Detectable  Effect Sizes
The approximate minimum detectable effect s ize for the cluster randomized design is

Where Mdf is  the constant depending on the degrees of freedom

Mdf is  a decreasing function of df and Mf < 2.9 for df > 16, but M∞ = 2.80, so 2.8 <  Mdf < 2.9

The approximate minimum detectable effect s ize for the multis ite individually randomized 
design is

Thus, the ratio of the minimum detectable effect s izes for these two designs is
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Values  of Mdf

df Mdf df Mdf

2 5.36 28 2.85
4 3.35 30 2.85
6 3.11 32 2.85
8 3.01 34 2.84

10 2.96 36 2.84
12 2.93 38 2.84
14 2.91 40 2.84
16 2.90 50 2.83
18 2.88 75 2.82
20 2.88 100 2.82
22 2.87 500 2.80
24 2.86
26 2.86 ∞ 2.80



Calculating Mdf

The calculation of Mdf is  based on approximating the noncentral t-distribution by a translated 
central t-distribution and ignoring the tail of the distribution that is  opposite the effect s ize 
(usually the negative tail)

 power = F{t < cα/2 | df, λ } = F{t –  λ < cα/2 | df, 0 }

First compute the two-sided critical value at the s ignificance level α

Then compute the value of the t-distribution corresponding to the quantile for the desired 
power (e.g., for 80% = 0.8 power, the 80th percentile.  Call this  tpower

For example, if df = 50, cα/2 =1.984 and tpower= 0.845, so that Mdf = 1.984 + 0.845 = 2.83



A Potentia l Problem with Multis ite  Des igns : 
Contamination

In multis ite designs, both treatments  are given to individuals  in the same sites

If the individuals  assigned to the control group experience some of the treatment, this  may 
weaken the treatment contrast and the treatment effect

This  phenomenon is  called contamination

It is  a potentia l problem with multis ite designs, but how big a problem is  it?



Contamination

Contamination is  often less  of a problem than it might seem

Some treatments  require special materials  or materials

Some treatments  require substantial specialized training

Even if there is  s ome  contamination that weakens the treatment contrast, the multis ite design 
may still be more powerful (despite a weakened treatment effect) (see Rhoads, 2011)

However: Contamination is  a potential problem—if you use a multis ite design, you are 
obligated to  explain why contamination is  not likely to be an important problem in your study



What if I Chos e  a  Clus te r Randomized Des ign, 
But I Don’t Have  the  Required Des ign Sens itivity?

Consider adding covariates

The approximate minimum detectable effect s ize with covariates  is

where Mdf is  the constant depending on the degrees of freedom discussed before and 

R1
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2 are the (squared) level 1 and level 2 covariate-outcome correlations 
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Comparing Sens itivity with and without Covariates :
Clus te r Randomized Des igns

Compare expressions for the MDES with and without covariates

(because Mdf changes little with df if df is  moderate in s ize)

Because 1 – ρ is  typically smaller than nρ, the ratio of MDES values is  ve ry approximately (for 
large n)

This  is  analogous to the result for the completely randomized design

A single level 2 covariate with R2 = 0.7 (R2
2 = 0.49) would reduce the MDES by a factor of 
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Limiting Values  of MDES:
Clus te r Randomized Des igns

Note that even if the covariates  at the individual level explained all of the variance at the 
individua l                                                                                    in  that case

If the covariates  at the cluster level explained all of the variance at the c lus te r level, so that R2
2 

= 1, then δAM > 0. In that case
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MDES in Clus te r Randomized Des igns  with 
Covaria tes  as  a  Function of R2 (n = 20)

R2

m 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
5 0.99 1.01 1.00 0.97 0.94 0.90 0.85 0.78 0.69 0.58
6 0.88 0.89 0.88 0.86 0.83 0.79 0.75 0.69 0.61 0.51
7 0.80 0.80 0.79 0.78 0.75 0.72 0.68 0.62 0.55 0.46
8 0.74 0.74 0.73 0.71 0.69 0.66 0.62 0.57 0.51 0.42
9 0.69 0.69 0.68 0.67 0.64 0.62 0.58 0.53 0.47 0.40

10 0.65 0.65 0.64 0.63 0.61 0.58 0.54 0.50 0.44 0.37
12 0.59 0.59 0.58 0.57 0.55 0.52 0.49 0.45 0.40 0.34
15 0.52 0.52 0.51 0.50 0.48 0.46 0.43 0.40 0.36 0.30
18 0.47 0.47 0.46 0.45 0.44 0.42 0.40 0.36 0.32 0.27
20 0.45 0.44 0.44 0.43 0.42 0.40 0.37 0.34 0.30 0.26
25 0.40 0.40 0.39 0.38 0.37 0.35 0.33 0.30 0.27 0.23
30 0.36 0.36 0.35 0.35 0.34 0.32 0.30 0.28 0.25 0.21
35 0.33 0.33 0.33 0.32 0.31 0.30 0.28 0.26 0.23 0.19
40 0.31 0.31 0.31 0.30 0.29 0.28 0.26 0.24 0.21 0.18
50 0.28 0.28 0.27 0.27 0.26 0.25 0.23 0.21 0.19 0.16



Combining Imbalance  and Covaria tes :
Clus te r Randomized Des igns

Suppose that the number of clusters  in the intervention group is  fixed at mT, but the number in 
the comparison group is  mC =cmT, there are q level 2 covariates, and the size of each cluster is  
n 

The minimum detectable effect s ize in the unbalanced design is  approximately

The ratio of MDES in unbalanced to balanced designs with covariates  to balanced designs 
without covariates  is  approximately
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The Magic  Number 0.7

Notice that a pretty good cluster level covariate can decrease the minimum detectable effect 
s ize by a factor of about 0.7

The maximum decrease in minimum detectable effect s ize attainable via imbalance is  about 
0.7

Neither of these strategies (covariates  or imbalance) can completely solve the sample size 
problem, but they can help



How Should I Pick the  Clus te r Sample  Size?



Cos t Effic iency and Optimal Des igns :
Clus te r Randomized Des igns

In cluster randomized designs, sensitivity depends on both number of clusters  m and cluster s ize n

 Designs with different configurations of m and n can therefore have the same sensitivity

For example, a design with m = 25 and n = 5 or m = 15 and n = 50 both have a MDES of 0.49

Similarly, a design with m = 30 and n = 10 or m = 40 and n = 50 both have a MDES of 0.34

Which design should be chosen?

One principle for making the choice is  cos t e ffic iency

Choose the design gives the greatest sensitivity for a fixed cost 

Personal view: This  principle is  helpful in informing design choices, but should never be followed 
blindly for two reasons:

 -It can lead to obviously unwise choices in some cases 

 -The cost models  are used are s implistic and costs  can only be crudely approximated



Linear Cos t Model

Linear cos t model

Assume costs  of three  types:

Fixed cos ts  of doing the experiment that do not depend (or depend weakly} on size (cost of 
principle investigator, administration, staff that supervise field operations, statistical analysis, 
etc.)

Variable  cos ts  that depend strongly on sample size (either m or n) are primarily he costs  
associated with field operations (e.g., recruitment, incentives, materials, and data collection)

The variable costs  may be different for different levels  of the design

Variable costs  can be difficult to know exactly, but can often be estimated approximately 
based on experience and extrapolation



Variable  Cos ts  a t the  Clus te r Leve l

Recruitment: Costs  associated with obtaining agreement to participate in the experiment

 -Travel to s ites  for research team members to explain the study (one or more trips)

 -Expendable materials  for use in recruiting

Incentives: Pure financial incentive costs  are easy to calculate

 -Replacement staff (e.g., if teachers need to be removed from classes to be trained)

 -Costs  of professional development (this  can be substantial particularly if a treatment 
  involves all the teachers in a schools)

 -Materials  for deferred adoption of treatment in control clusters  (if offered)

Materials : Expendable material or equipment used in treatment 



Variable  Cos ts  a t the  Clus te r Leve l

Data Collection: All costs  of obtaining covariate, implementation, and outcome data

 -Shipping assessment instruments to and from sites

 -Obtaining covariate data at the s ite level

 -Coordinating staff on site to facilitate data collection

 -Travel costs  for data collection personnel (collection of implementation data via  
 observations is  particularly costly)

 -Costs  for personnel doing qualitative studies of clusters

Feedback to clusters  about progress and results  (e.g., reports  of each cluster’s  performance)



Variable  Cos ts  a t the  Individual Leve l

Incentives: Any incentives provided to individuals  e.g., students) who participate

Treatment itself: Books, hardware, software, materials  needed for the treatment

Data collection: All costs  of data collection that can be associated with the individual

 -Consumable tests  and scoring

 -Staff time for interviews, individually administered tests, etc.



Linear Cos t Model

Goal: To obtain greatest sensitivity for a fixed cost

Fixed costs  do not matter

Compute the cost for each additional c lus te r: Call this  c2

Compute the cost for each additional individual in an existing cluster: Call this  c1

The total (variable) cost of  and experiment with m clusters  per treatment of s ize n is  

 C = 2mc2 + 2mnc1

Solving this  equation for m yields m = C/(2nc1+2c2)

Inserting this  expression for m into the expression for the variance of the treatment effect and 
maximizing for n (here C, c1, and c2 are fixed) yields nO the optimal n



Optimal Clus te r Size :
Clus te r Randomized Des igns

With no covariates  the optimal n has a surpris ingly simple form

The qualitative implications are what you would expect

 -The larger the (relative) cost of each cluster, (c2/c1) the larger nO becomes

  -The larger the intraclass correlation, the smaller nO becomes

It is  also useful to understand this  in terms of the level 1 and level 2 variance components

Because  ρ2 is  proportional to σ2
2  and 1 – ρ  is  proportional to σ1

2 then 

The larger the (relative) individual variance (σ1
2/ σ2

2), the larger nO becomes
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Optimal Clus te r Sizes  for Clus te r Randomized Des igns  as  
a  Function of c2 /c1 and ρ

ρ
c 2 /c 1 0.01 0.05 0.10 0.15 0.20 0.25

1 9.9 4.4 3.0 2.4 2.0 1.7
2 14.1 6.2 4.2 3.4 2.8 2.4
5 22.2 9.7 6.7 5.3 4.5 3.9

10 31.5 13.8 9.5 7.5 6.3 5.5
20 44.5 19.5 13.4 10.6 8.9 7.7
30 54.5 23.9 16.4 13.0 11.0 9.5
40 62.9 27.6 19.0 15.1 12.6 11.0
50 70.4 30.8 21.2 16.8 14.1 12.2
75 86.2 37.7 26.0 20.6 17.3 15.0

100 99.5 43.6 30.0 23.8 20.0 17.3



Optimal Des ign:
Clus te r Randomized Des igns

We obtain the m for the experiment by first picking nO and then selecting the m required to 
achieve the required design sensitivity

Note that optimal cluster s izes are not integers  (rounding is  obviously needed)

What surprises most researchers is  how small the optimal cluster s ize often is

For example, if the relative cost of clusters  is  10 times that of individuals  and the intraclass 
correlation is   0.20, the optimal cluster s ize is  6

Few researchers would plan an experiment using only 6 students  per school, many might think 
that 20 – 50 students  per school would be needed

The reason these results  are possible is  that design sensitivity depends so weakly on n



Optimal Clus te r Size  with Covaria tes :
Clus te r Randomized Des igns

With covariates  the form of the optimal n is  only slightly more complex

The qualitative implications are what you would expect

 -The larger the (relative) cost of each cluster, (c2/c1) the larger nO becomes

  -The larger the intraclass correlation, the smaller nO becomes

 -The larger                                becomes, the larger nO becomes

As an empirical generalization, R2
2 is  often bigger than R1

2, so 1 – R1
2 > 1 – R2

2 

Therefore, the use of covariates  often increases nO
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Optimal Clus te r Size  with Covaria tes :
Clus te r Randomized Des igns

This can also be better understood in terms of adjusted variance components

The qualitative relationship with covariates  is  the same as that without covariates

 -The larger the (relative) cost of each cluster, (c2/c1) the larger nO becomes

  -The larger the (relative) covariate adjusted individual variance (σA1/ σA2
2), the larger nO 

   becomes
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Comments  on Optimal Clus te r Randomized 
Des igns

Consider optimal design information as informative but not determinative

Small cluster s izes are dangerous: Loss of a few individuals  can lead to loss of an entire cluster

Round up to have slightly larger clusters  than are necessary

Design parameters  (costs, intraclass correlation, and R2 values) used are often approximate

Work on robustness suggests  that underestimation of intraclass correlations impairs  efficiency 
more than overestimation, so assume slightly larger intraclass correlations than expected

The optimal design computed if the intraclass correlation is  overestimated by 75%, is  90% as 
efficient as  the truly optimal design



The Multis ite  Des ign



Why Us e  a  Multis ite  Des ign?

Multis ite designs are potentially more efficient than individually randomized designs

Multis ite designs distribute the benefits  of treatment more widely than cluster randomized 
designs (every site receives some treatment)

Multis ite designs require a smaller commitment by sites  to treatment than cluster randomized 
designs (not everyone gets  randomized to treatment)

But

Multis ite designs are administratively more complex

Contamination between treatment groups in the same site is  a possibility

There may be practical, political, or theoretical  difficulties  in assigning individuals  in the same 
site to different treatments



Sites , Clus te rs , and Blocks

The term “site “ in this  design can be misleading

In experimental design, this  design is  called the (generalized) randomized block des ign to 
emphasize that s ites  are a kind of block—a preexisting aggregate of individuals  (you cannot, or 
do not, randomly assign individuals  to blocks) 

Blocks may be sites  like schools, clinics, or districts

Blocks may also be cohorts  of individuals, randomization groups (when there are waves of 
randomization), grade levels, or treatment providers  (therapists, specialists, etc.), or other 
matched groups of individuals

An extreme example is  a design in which pairs  of individuals  are matched on covariates, then 
one of each pair is  assigned to each treatment group—in this  case the pairs  are “sites”

Note that this  design uses the design principles of matching and randomization



Fixed and Random Effec ts  and Models  for Genera lization

Multis ite designs introduce a conceptual complexity that does not arise in s impler designs (or 
it is  obscured, as  in cluster randomized designs)

What role should statistical inference play in the generalizations drawn from the study?

Alternatively, what, specific parameter are we estimating or testing hypotheses about?

(Statisticians would say, “What is  the e s timand?”)

In the multis ite design there are at least two options:

 1) Inferences are about the average treatment effect in the  s ites  inc luded in the   
     experiment

 2) Inference are about the average treatment effect in the  (s uper)population of s ites  
from  which those in the experiment are a random sample



Fixed and Random Effec ts  and Models  for 
Genera lization

Option #1 (infer to s ites  included in the experiment) is  called the fixed effects  estimand

Option #2 (infer to the superpopulation of s ites) is  called the random effects  estimand

Because the statistical inference is  about different parameters, the analyses required are 
different and so are the factors  that determine design sensitivity

Both can be technically  correct, the choice must be based on extra-statistical considerations

Choosing requires addressing a deep issue of scientific methodology of the limits  of statistical 
inference and its  place in scientific inference



Multis ite  Des ign (Random Site  Effects )

Recall the idea of s imple  main e ffec ts  of treatments  (s ite-specific treatment effects)

Let μT
a and μC

a be the treatment and control mean parameters  in s ite a and let YT
a and YC

a be 
their estimates

Then the simple main effect parameter and estimate at s ite a are θa = μa
T – μa

C and Ta = Ya
T – Ya

C 

When sites  have random effects, s ites  are treated as a sample from a population of s ites

Thus, the s imple main effect parameters  (the θa) are a random sample from a population of 
effects

The estimand is  not the mean of the θa‘s  that are observed, but the mean of the entire 
population of θa‘s  (including those that belong to s ites  that are not included in the experiment)

If the θa‘s  in the experiment were observed, we would know that the mean of the θa‘s  would be 
an estimate of the population mean of the θa‘s  and the uncertainty of the sample mean would 
depend on the variance of the θa‘s  



Multis ite  Des ign (Random Site  Effects )

In the multis ite design, we do not observe any of the θa‘s  directly (they are unknown 
parameters)

But we do observe estimates of the θa‘s   (the Ta‘s)

It follows that the uncertainty of any estimate of the mean of the θa‘s  using the Ta‘s  must 
depend on the  uncertainty (variance) of the θa‘s

The fact that the variance of the treatment effect estimate depends on the variance of the θa‘s  
makes the analysis  of multis ite designs with random site effects  more complex

This fact also makes multis ite designs with random site effects  less  sensitive than if s ite 
effects  are fixed

The design parameter that describes the heterogeneity of treatment effects  across s ites  is  the 
effect s ize variance: Var{θa /σ1

2} = ω2
2 = τ2

2/σ1
2 



The Effect Size  Variance  ω2
2

Note that we have introduced another des ign parameter ω2
2

 It may not be a parameter about which researchers have much experience or insight

The parameter ω2
2 is  best understood as the e ffec t s ize  variance  across s ites

Recall that the s imple main effect is  θa = μa
T – μa

C thus θa /σ1 = (μa
T – μa

C)/σ1 is  an effect s ize

The variance of θa /σ1 is  ω2
2 = τ2

2/σ2
2 so ω2

2 is  truly the variance of the simple main effect s izes

Values of ω2
2 depend on the treatment and the setting and they cannot be known or even 

estimated until the experiment is  conducted

Empirical values of ω2 (not ω2
2) from experiments  in education and social science range from 0 

to about 0.30, with the mean and median being about 0.12

Values of 0 are reported in about 30%-40% of experiments, but values of exactly 0 are 
somewhat suspect



Approximate  Minimal Detectable  Effect Size :
Multis ite  Des igns  (Random Site  Effec ts )

It is  useful to have an algebraic approximation to the minimum detectable effect s ize

where Mdf is  the constant depending on the degrees of freedom discussed before 

Recall that Mdf is  a decreasing function of df and Mf < 2.9 for df > 16

It might be surpris ing that the MDES does not involve the intraclass  correlation, but only τ2
2 and σ1

2 
(via ω2

2)

Recall that the treatment effect is  a mean of s imple main effects  and the uncertainty of the s imple 
main effect parameters  depends on their variance (τ2

2) and the estimation error in Ta as  an estimate 
of θa which depends on σ1

2 

 Another way to think about it is  that the s imple main effects  are differences between s ite-specific 
means, both means contain the s ite effect, so the s ite effect disappears  in the difference

2
2

1
2

M m
nM

mn
ωδ −

+
≈



Approximate  Minimal Detectable  Effec t Size :
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It is  useful to have an algebraic approximation to the minimum detectable effect s ize
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ω2
2 is  the effect s ize variance of s imple main effects



Des ign Sens itivity and Des ign Parameters :
Multis ite  Des igns  (Random Site  Effec ts )

The approximate MDES shows us how sensitivity of the multis ite design depends on design 
parameters

We see that δM is  decreasing function of m and n and an increasing function of ω2
2

We also see that as  m becomes large, δM tends to zero

Similarly, as  ω2
2 becomes large, δM becomes large

But, like in cluster randomized designs, as  n becomes large δM tends to a positive limit
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MDES: Multis ite  Des igns  (Random Site  Effec ts ) as  a  
Function of m, n, and ω2

ω2 ω2

m 0 0.1 0.2 0.3 0.5 0 0.1 0.2 0.3 0.5
n = 10 n = 20

5 0.76 0.78 0.83 0.91 1.13 0.54 0.56 0.63 0.74 1.00
6 0.65 0.66 0.71 0.78 0.97 0.46 0.48 0.54 0.63 0.85
7 0.57 0.59 0.63 0.69 0.86 0.41 0.43 0.48 0.56 0.76
8 0.52 0.53 0.57 0.63 0.78 0.37 0.39 0.44 0.51 0.69
9 0.48 0.49 0.53 0.58 0.72 0.34 0.36 0.40 0.47 0.64
10 0.45 0.46 0.49 0.54 0.67 0.32 0.34 0.38 0.44 0.59
15 0.35 0.36 0.39 0.42 0.42 0.25 0.26 0.30 0.34 0.47
20 0.30 0.31 0.33 0.36 0.36 0.21 0.22 0.25 0.29 0.40
25 0.27 0.27 0.29 0.32 0.32 0.19 0.20 0.22 0.26 0.35
30 0.24 0.25 0.26 0.29 0.29 0.17 0.18 0.20 0.24 0.32
40 0.22 0.23 0.24 0.27 0.27 0.16 0.17 0.19 0.22 0.29
50 0.21 0.21 0.23 0.25 0.25 0.15 0.16 0.17 0.20 0.27



What if I Chos e  a  Multis ite  Individually Randomized Des ign, 
But I Don’t Have  the  Required Des ign Sens itivity?

Consider adding covariates

The approximate minimum detectable effect s ize with covariates  is

where Mdf is  the constant depending on the degrees of freedom discussed before and R1 is  the 
level 1 covariate-outcome correlation and Q2 is  the trea tment e ffec t-outcome  corre la tion

Note that it may be difficult to obtain covariates  that explain a substantial amount of treatment 
effect variation, so you may not be able to rely on a large value of Q2

2
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Increas ing Des ign Sens itivity:
Multis ite  Des igns  (Random Site  Effec ts )

Design sensitivity can be increased by using covariates

Covariates  can be added at either level 1 (the individual level) or level 2 (the site level)

The effect of a covariate at a particular level can be understood as decreasing the (effective) 
variance at that level

Because the relevant level 2 variance component  (ω2
2) may have the largest effect on 

uncertainty of the treatment effect, level 2 covariates  will generally have the largest effect on 
design sensitivity

But

The relevant level 2 variance component (ω2
2 = τ2

2/σ1
2) is  the effect s ize variance—the function 

of the covariate is  to explain this  effect s ize variance (not outcome  variance )

There is  much less  scientific knowledge about covariates  that explain treatment effect 
variance than about covariates  that explain outcomes



Unbalanced Allocation in Multis ite  Des igns  (Random Site  
Effec ts )

Suppose that the number of individuals  allocated to treatment in the intervention group is  fixed 
at nT, but the number in the comparison group is  not, i.e., nC = cnT, for some 𝑐𝑐 ≥ 1

The variance of the treatment effect estimate is  therefore

The degrees of freedom of the test statistic are unchanged (m – 1) but the noncentrality 
parameter becomes

Note that as  c tends to infinity, the limiting power is  not 1 but is  determined by the limiting λ 
value
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Unbalanced Allocation in Multis ite  Des igns  (Random Site  
Effec ts )

The minimum detectable effect s ize in the unbalanced design is  approximately

Note that as  c tends to infinity, the limiting value of δMU is  not zero but

the  last approximation because nTω2
2 is  typically considerably larger than 1
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Combining Unbalanced Allocation and Covaria tes :
Multis ite  Des ign (Random Site  Effec ts )

Combining unbalanced allocation and covariates, the approximate minimum detectable effect 
s ize is  

As c becomes large δ tends to 
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Optimal Allocation within Sites  with Covaria tes :
Multis ite  Individually Randomized Des ign

With covariates  the form of the optimal n is  only slightly more complex

The qualitative implications are what you would expect

 -The larger the (relative) cost of each cluster, (c2/c1) the larger nO becomes

  -The larger the effect s ize variance, the smaller nO becomes

 -The larger                                becomes, the larger nO becomes

As an empirical generalization, R1
2 is  often bigger than Q2

2, so 1 – R1
2 < 1 – Q2

2 

Therefore the use of covariates  often decreases nO
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Optimal Allocations  as  a  Function of c2 /c1 and ω2:
Multis ite  Individually Randomized Des ign

ω2

c2 /c1 0.01 0.05 0.10 0.15 0.20 0.25
1 70.7 14.1 7.1 4.7 3.5 2.8
2 100.0 20.0 10.0 6.7 5.0 4.0
5 158.1 31.6 15.8 10.5 7.9 6.3

10 223.6 44.7 22.4 14.9 11.2 8.9
20 316.2 63.2 31.6 21.1 15.8 12.6
30 387.3 77.5 38.7 25.8 19.4 15.5
40 447.2 89.4 44.7 29.8 22.4 17.9
50 500.0 100.0 50.0 33.3 25.0 20.0
75 612.4 122.5 61.2 40.8 30.6 24.5

100 707.1 141.4 70.7 47.1 35.4 28.3



Obtaining the  Optimal Des ign:
Multis ite  Des ign (Random Site  Effec ts )

We obtain the m for the experiment by first picking nO and then selecting the m required to 
achieve the required design sensitivity

Note that optimal allocations are not integers  (rounding is  obviously needed)

What surprises most researchers is  how small the optimal allocation often is

For example, if the relative cost of s ites  is  10 times that of individuals  and the effect s ize 
variance is   0.10, the optimal cluster s ize is  7

Few researchers would plan an experiment using only 7 students  per school to each treatment 
group, many might think that 25 – 30 students  per school for each treatment would be needed

The reason these results  are possible is  that design sensitivity depends weakly on n (but the 
dependence is  stronger than in cluster randomized designs)



Us ing Optimal Des ign Information

Optimal design calculations should inform but not completely determine design choices

Optimal designs often have very small allocations that are practically difficult to achieve 
because they involve singling out small groups of individuals  for treatment and assessment of 
outcomes

Very small optimal allocations may be unwise to use because loss of those few individuals  can 
result in loss of an entire s ite from the analysis  (which can lead to serious reductions in design 
sensitivity)

Even if attrition of individuals  does not lead to loss of s ites, s ites  with very small numbers of 
individuals  can also lead to severe imbalance that can cause serious reductions in design 
sensitivity



Multis ite  Clus te r Randomized Des ign

Sometimes we have multiple s ites  (or blocks) but we can only assign intact groups within s ites  to 
treatments

The intuition is  that we want to assign  to treatments  within s ites, but  it is  unfeasible or impossible 
to assign individuals   to treatments

For example, 

 we have multiple schools, but we must assign classrooms to treatments

 we have multiple districts, but we must assign schools  to treatments

This  leads to a multis ite cluster randomized design



Do Sites  Have  Fixed or Random Effects?

This decis ion has important consequences for design sensitivity

Suppose that there are m s ites, with p clusters   of s ize n assigned to each treatment within each s ite

If s ites  have fixed effects, the minimum detectable effect s ize is

But if s ites  have random effects  the minimum detectable effect s ize is

If the number of s ites  m is  small (or   is  big), δMR is much bigger than δMFn
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Must We Match Sampling 
and Analys is  Models?



The  Is s ue

Genera l Ques tion: What happens when you design a study with 
randomized groups that comprise three levels  based on data 
which do not account explicitly for the middle level? 

Spec ific  Example : What happens when you design a study that 
randomizes schools  (with students  clustered in classrooms in 
schools) based on data for students  clustered in schools? 



Short Answer

Ignoring the top randomized level (e.g., schools) is  neve r OK

Ignoring a middle  leve l in the analysis  has no impact on the accuracy of s ignificance tests  in a 
balanced design

Ignoring a middle level in the analysis  has little impact on the accuracy of s ignificance tests  in 
most unbalanced designs

Variance component estimates for both levels  may be biased

The power of the two level analysis  is  therefore tricky to calculate

Thus, specifying sample sizes for the design can be tricky



How Can it be  OK to Omit a  Leve l?

The analysis  of cluster randomized trials  does a t-test on cluster means

If there is  two-level sampling, the cluster means have variance

 (σT
2/n)[1 + (n – 1)ρ3]

If there is  three-level sampling, (p subclusters per clusters, n individuals  per subcluster) the cluster means have 
variance

 (σT
2/pn) [1 + (pn – 1)ρ3 + (n – 1)ρ2]

The key point is  that the assumptions of the t-test are still valid—cluster means are independent and have 
identical variances (in balanced designs), but the precision is  different



Example : 3-leve l vs . 2-leve l MDES

Outcomes Unconditional Conditional Unconditional Conditional
Expressive Vocabulary (Spring) 0.482 0.386 0.495 0.311

Stanford 9 Total Math Scaled Score                                  0.259 0.184 0.259 0.184

Stanford 9 Total Reading Scaled Score                                0.261 0.148 0.264 0.150
Sources: The Chicago Literacy Initiative: Making Better Early Readers study (CLIMBERs) database and the School Breakfast Pilot Project (SBPP) d  

MDES
3-Level Model 2-Level Model

Note the s imilarities


variance components

		

				Table.  3-level vs. 2-level Model Comparison (1): Non-Standardized Uncondistional Variance Components

								Variance Components

								3-Level Model										2-Level Model

				Outcomes				School		Class		Student		Total				School				Student		Total

				Expressive vocab-spring				19.84		32.45		306.18		358.48				38.15				321.11		359.26

				Stanford 9 Total Math Scaled Score				115.14		36.40		1273.15		1424.69				131.39				1293.24		1424.63

				Stanford 9 Total Reading Scaled Score				108.75		158.95		1581.86		1849.56				181.77				1666.48		1848.25

				Sources: The Chicago Literacy Initiative: Making Better Early Readers study (CLIMBERs) database and the School Breakfast Pilot Project (SBPP) database.
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				Table . 3-level vs. 2-level Model Comparison (2): MDES
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								3-Level Model								2-Level Model

				Outcomes				Unconditional				Conditional				Unconditional				Conditional

				Expressive Vocabulary (Spring)				0.482				0.386				0.495				0.311

				Stanford 9 Total Math Scaled Score				0.259				0.184				0.259				0.184

				Stanford 9 Total Reading Scaled Score				0.261				0.148				0.264				0.150

				Sources: The Chicago Literacy Initiative: Making Better Early Readers study (CLIMBERs) database and the School Breakfast Pilot Project (SBPP) database.
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Variance  Component Es timates : 3-leve l vs . 2-leve l Analys es  

Outcomes School Class Student Total School Student Total

Expressive Vocabulary (Spring) 19.84 32.45 306.18 358.48 38.15 321.11 359.26

Stanford 9 Total Math Scaled Score                                  115.14 36.40 1273.15 1424.69 131.39 1293.24 1424.63

Stanford 9 Total Reading Scaled Score                                108.75 158.95 1581.86 1849.56 181.77 1666.48 1848.25

Sources: The Chicago Literacy Initiative: Making Better Early Readers study (CLIMBERs) database and the School Breakfast Pilot Project (SBPP) datab  
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				Expressive vocab-spring				0.482				0.386				0.495				0.311
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