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Topics for Today

1. Planningaresearch design

Design sensitivity

Choosinga particular design
Planning cluster randomized designs

Planning multisite (randomized block) designs

A

Is it ever OKto ignore levels of sampling in our analyses?



Research Design i1s an Iterative Process

Research design is an iterative process:

1. First you consider what is possible and feasible

2. 'Then you evaluate sensitivity

3. Findingthatitis too small you see ifyou can change the design to improve sensitivity
4

You mayre-evaluate what is possible and feasible

Obvious design changes could be adding covariates or introducingimbalance, ifthat enables
a largertotal sample size

Design changes can often involve implementing the design in cohorts (year 1, year 2)



Planning a Design

Planning a design is creatinga data collection protocol that has adequate sensitivity to detect
the effect size expected orthe smallest meaningful effect size

Rememberthat the design must be adequately sensitive to yield unambiguous results
So farthat means findinga sample size that has adequate sensitivity

Ifresources are unlimited, this means simply obtainingan adequate sample size (look ata
graph or a table of power values)

Resources (budget) are essentiallyalways limited in research

This reality makes design a more difficult problem



Improving Design Sensitivity

Design sensitivity (holding significance level constant) in any design depends on effect size,
sample size(s), and certain other design parameters which are different for different designs

Thus, to increase design sensitivity we can: Increase sample size(s), reduce variation (which
increases the effective effect size, or change the design

While the effect size ofa treatment maynot easilybe increased, use of covariates can reduce
variation so that the “effective” effect size 1s increased

Similarly, changing the design (e.g., mtroducing matching or blocking) mayreduce variation

Depending on constraints there maybe ways ofincreasing sample size by planned imbalance



There 1s Always Potential Confounding

Practical considerations often push us towards larger sample sizes
Larger sample sizes increase sensitivity but often introduce variation
More variation can introduce possible confounding

Example: 1o get more schools you mayneed several districts (or regions or states )—Are
districts blocks are do theyhave random effects?

More schools increases sensitivity, but if districts have random effects that does that
decrease sensitivity?



We Have Focused on Three Basic Designs:
The Cluster Randomized Design,

the Multi-site Individually Randomized Design,
the Multisite Cluster Randomized Design

Whychoose one versus the other?

Is one design more sensitive than the other (for a fixed sample size)?

Are there otherreasons to choose versus the other?



General Principles

Randomization at the lowest level possible gives the greatest design sensitivity

Generally:

Individuallyrandomized designs are more sensitive than multisite individually randomized
designs which are more sensitive than cluster randomized designs

Why?
(This is not obvious)



To Understand This Think About Variance

Compare the individuallyrandomized design with sample size N = 2mn to a cluster randomized
design with a sample size of N = 2mn (m clusters pretreatment with n observations per cluster)

The total variance ofan individual observation in either design is 6,7 = ¢,° + 0’
In both designs the treatment effect is a mean difference

The variance ofthe mean difference in the individuallyrandomized design is
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Interpretation

The same components of variance exist in the observations

We reduce variance in the treatment group means by averaging

Randomization ofindividuals allows us to average every component of variance over all
observations in each group

Randomization over clusters means that the cluster-specific component of variance i1s only
averaged over m the numberofclusters, not mn, the number ofobservations in each group

Different research designs partition the variance so that different components ofvariance
contributed to the variance (the uncertainty Jofthe treatment



Compare Multisite Individual Randomization to

Cluster Randomization

Compare the individually multisite individually randomized design with sample size N = 2mn (m
sites with n individuals per treatment persite)to a clusterrandomized design with a sample
size of N = 2mn (m clusters per treatment with n observations per cluster)

The total variance ofan individual observation is 0,7 = ¢, + 0,7 + 7,7

In both designs the treatment effect is a mean difference

The variance ofthe mean difference in the individuallyrandomized design is (as before)
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Cluster Randomization

Compare the individually multisite individually randomized design with sample size N = 2mn (m
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Compare Multisite Individual Randomization to

Cluster Randomization

Compare the individually multisite individually randomized design with sample size N = 2mn (m
sites with n individuals per treatment persite)to a clusterrandomized design with a sample
size of N = 2mn (m clusters per treatment with n observations per cluster)

The total variance ofan individual observation is 0,7 = ¢, + 0,7 + 7,7
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Why Cluster Randomization?

Clusterrandomization is less efficient (leads to less sensitive designs)than individual
randomization

So whyrandomize clusters?

Assignment of individuals to treatments independentlyis sometimes impractical, unfeasible,
orimpossible

Forexample:

It is impractical to assign students in the same classroom to different curricula, have different
dutyrules forinterns supervised in the same clinic

It maybe politically difficult to assign only some students (orteachers)in a schoolto a much
more desirable treatment

It 1s theoretically impossible to assign aggregate treatments to different individuals within the
same aggregate (e.g., while school behavior support, whole school trust interventions)



Why Cluster Randomization?

Contamination between treatment and control groups is sometimes a concern
This could be madvertent or intentional
Forexample

Control teachers might learn of new teaching methods from their colleagues in the treatment
group

Students m a tutoring intervention might bring their untutored peers to their tutoring sessions,
intentionally subverting the experiment

Parents in the same school might insist that their children assigned to the control group
receive the treatment



What is the Alternative to Cluster Randomization?

The multisite individually randomized (randomized block)design 1s an alternative you know
Compare the two designs with total sample size N = 2mn:
-Forthe CRTm clusters ofsize nassigned to each treatment group

-For the MSIRTm sites with n individuals assigned to each treatment at each site

Compute the (approximate) minimum detectable effect size for each design



Comparing Minimum Detectable Effect Sizes

The approximate minimum detectable effect size for the cluster randomized design 1s
2[1+(n-1)p, |
Ovicrk ®M,,,_,

mn
Where M, 1s the constant dependingon the degrees of freedom

M 1s a decreasing function ofdfand M,<2.9 for df > 16, but M, = 2.80,s0 2.8 < M, <2.9

The approximate minimum detectable effect size for the multisite individually randomized
design is
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Thus, the ratio ofthe minimum detectable effect sizes for these two designs is

@NJZ[H(n—I)p]:JH(n—I)p J [ np

N 2400 1+(n/2)0*  \1+no)2

5MMS



Values ot M,

5.36 285
3.35 30 2.85
6 [ER 32 2.85
R s.o01 34 2.84
2.96 36 2.84
2.93 38 2.84
2.91 40 2.84
2.90 50 2.83
2.88 75 2.82
2.88 100 2.82
2.87 500  2.80
2.86

2.86 0 2.80



Calculating M,

The calculation of M,,-is based on approximating the noncentral z-distribution by a translated
central -distribution and ignoring the tail ofthe distribution that is opposite the effect size
(usually the negative tail)

power=F{t<c,,|df, A} =F{t— 1<c,,|df, 0}
First compute the two-sided critical value at the significance level a

Then compute the value ofthe ¢-distribution corresponding to the quantile for the desired
power (e.g., for 80% =0.8 power, the 80" percentile. Call this

tpower

Forexample, ifdf= 50, ¢, =1.984 and ¢,,,,,= 0.845, so that M= 1.984 + 0.845 = 2.83

‘power



APotential Problem with Multisite Designs:

Contamination

In multisite designs, both treatments are given to individuals in the same sites

Ifthe mmdividuals assigned to the control group experience some ofthe treatment, this may
weaken the treatment contrast and the treatment effect

This phenomenon is called contamination

It is a potential problem with multisite designs, but how big a problem is it?



Contamination

Contamination is often less ofa problem than it might seem

Some treatments require special materials or materials

Some treatments require substantial specialized training

Even if there is some contamination that weakens the treatment contrast, the multisite design
may still be more powerful (despite a weakened treatment effect) (see Rhoads, 2011)

However: Contamination is a potential problem—ifyou use a multisite design, you are
obligated to explain why contamination is not likely to be an important problem in your study



What ifIChose a Cluster Randomized Design,

But I Don’t Have the Required Design Sensitivity?

Consideradding covariates

The approximate minimum detectable effect size with covariates 1s
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where M, 1s the constant depending on the degrees offreedom discussed before and 122 =1-R’

R, and R, are the (squared)level 1 and level 2 covariate-outcome correlations

Note that R,” matters much more than R,



Comparing Sensitivity with and without Covariates:

Cluster Randomized Designs

Compare expressions for the MDES with and without covariates
S Mo, 1?12+(1?22n—1?12)p~ E12+(1322n—1312)p_ (1—p)E2+n§§p
5, M, | 1+(n—-1)p 1+(n—-1)p (1-p)+np

(because M, changes little with dfif df is moderate in size)

Because 1 —p is typically smaller than np, the ratio of MDES values is very approximately (for

large n) P
éflM ~ R =\1-R;

M

This 1s analogous to the result for the completelyrandomized design

Asingle level 2 covariate with R, = 0.7 (R, = 0.49) would reduce the MDES by a factor of

v1-0.49 =0.71



Limiting Values of MDES:

Cluster Randomized Designs

Note that even ifthe covariates at the individual level explained all of the variance at the
individual level,sothat R’ =1andR’ =0, &, >0 in thatcase

2R; p

m

O ®M
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Ifthe covariates at the cluster level explained all ofthe variance at the clusterlevel, so that R,?
=1,theno,,>0. Inthatcase
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MDES 1n Cluster Randomized Designs with
Covariates as a Function of R, (n = 20)

0.99 1.01 1.00 0.97 0.94 0.90 0.85 0.78 0.69 0.58
0.88 0.89 0.88 0.86 0.83 0.79 0.75 0.69 0.61 0.51
0.80 0.80 0.79 0.78 0.75 0.72 0.68 0.62 0.55 0.46
0.74 0.74 0.73 0.71 0.69 0.66 0.62 0.57 0.51 0.42
0.69 0.69 0.68 0.67 0.64 0.62 0.58 0.53 0.47 0.40
0.65 0.65 0.64 0.63 0.61 0.58 0.54 0.50 0.44 0.37
0.59 0.59 0.58 0.57 0.55 0.52 0.49 0.45 0.40 0.34
0.52 0.52 0.51 0.50 0.48 0.46 0.43 0.40 0.36 0.30
0.47 0.47 0.46 0.45 0.44 0.42 0.40 0.36 0.32 0.27
0.45 0.44 0.44 0.43 0.42 0.40 0.37 0.34 0.30 0.26
0.40 0.40 0.39 0.38 0.37 0.35 0.33 0.30 0.27 0.23
0.36 0.36 0.35 0.35 0.34 0.32 0.30 0.28 0.25 0.21
0.33 0.33 0.33 0.32 0.31 0.30 0.28 0.26 0.23 0.19
0.31 0.31 0.31 0.30 0.29 0.28 0.26 0.24 0.21 0.18
0.28 0.28 0.27 0.27 0.26 0.25 0.23 0.21 0.19 0.16
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Combining Imbalance and Covariates:

Cluster Randomized Designs

Suppose that the number ofclusters in the intervention group is fixed at m!, but the numberin
the comparison group is m¢ =cm’, there are g level 2 covariates, and the size ofeach cluster s
n

The minimum detectable effect size in the unbalanced design is approximately

Ovau :]\4N2\/(C—+T1j(ﬁl2 +(E§n_E2)p)

cm n

The ratio of MDES m unbalanced to balanced designs with covariates to balanced designs
without covariates 1s approximately

O (c+1] Ez‘*‘(ﬁzz”_ﬁf),"
s, \\ 2c I+(n—-1)p




The Magic Number 0.7

Notice that a pretty good cluster level covariate can decrease the minimum detectable effect
size bya factorofabout 0.7

The maximum decrease in minimum detectable effect size attamnable via imbalance is about
0.7

Neither ofthese strategies (covariates orimbalance)can completely solve the sample size
problem, but theycan help



How Should IPick the Cluster Sample Size?




Cost Efficiency and Optimal Designs:

Cluster Randomized Designs

In cluster randomized designs, sensitivity depends on both number of clusters m and cluster size n
Designs with different configurations of m and n can therefore have the same sensitivity
Forexample, a design with m =25 and n=5orm =15 and n = 50 both have a MDES 0f0.49
Similarly, a design with m =30 and » = 10 orm =40 and n = 50 both have a MDES 0f0.34

Which design should be chosen?

One principle for making the choice is cost efficiency

Choose the design gives the greatest sensitivity for a fixed cost

Personal view: This principle is helpful in informing design choices, but should never be followed
blindly for two reasons:

-It can lead to obviously unwise choices in some cases

-The cost models are used are simplistic and costs can onlybe crudely approximated



[inear Cost Model

Linear cost model
Assume costs ofthree types:

Fixed costs ofdoing the experiment that do not depend (or depend weakly}on size (cost of
principle mvestigator, administration, staffthat supervise field operations, statistical analysis,
etc.)

Variable costs that depend strongly on sample size (either m or n) are primarily he costs
associated with field operations (e.g., recruitment, incentives, materials, and data collection)

The variable costs maybe different for different levels ofthe design

Variable costs can be difficult to know exactly, but can often be estimated approximately
based on experience and extrapolation



Variable Costs at the Cluster Level

Recruitment: Costs associated with obtaming agreement to participate in the experiment
-Travelto sites forresearch team members to explain the study (one or more trips)
-Expendable materials for use i recruiting

Incentives: Pure financial incentive costs are easyto calculate
-Replacement staff(e.g., ifteachers need to be removed from classes to be trained)

-Costs of professional development (this can be substantial particularly ifa treatment
involves all the teachers in a schools)

-Materials for deferred adoption oftreatment in control clusters (if offered)

Materials: Expendable material or equipment used in treatment



Variable Costs at the Cluster Level

Data Collection: All costs ofobtaining covariate, implementation, and outcome data
-Shipping assessment instruments to and from sites
-Obtaming covariate data at the site level
-Coordinating staffon site to facilitate data collection

-Travel costs for data collection personnel (collection of implementation data via
observations 1s particularly costly)

-Costs for personnel domng qualitative studies of clusters

Feedbackto clusters about progress and results (e.g., reports of each cluster’s performance)



Variable Costs at the Individual Level

Incentives: Anyincentives provided to individuals e.g., students) who participate

Treatment itself: Books, hardware, software, materials needed for the treatment

Data collection: All costs ofdata collection that can be associated with the individual
-Consumable tests and scoring

-Stafftime for mterviews, individually administered tests, etc.



[inear Cost Model

Goal: To obtain greatest sensitivity for a fixed cost

Fixed costs do not matter

Compute the cost for each additional cluster: Call this c,

Compute the cost foreach additional individual in an existing cluster: Call this ¢,

The total (variable) cost of and experiment with m clusters pertreatment ofsize n 1s
C = 2mc, + 2mnc,

Solving this equation for m yields m = C/2nc,;+2c,)

Inserting this expression for m into the expression for the variance ofthe treatment effect and
maximizing for n (here C, ¢;, and c, are fixed) yields n, the optimaln



Optimal Cluster Size:

Cluster Randomized Designs

With no covariates the optimal n has a surprisingly simple form

oe(2)5)

The qualitative implications are what you would expect

-The larger the (relative) cost ofeach cluster, (c,/c;) the larger n,becomes
-The larger the intraclass correlation, the smaller n, becomes
It is also useful to understand this in terms ofthe level 1 and level 2 variance components
Because p,is proportionalto o, and 1 —p is proportionalto ¢, then
2
o))

The larger the (relative) individual variance (0,%/ 0,°), the larger n, becomes




Optimal Cluster Sizes for Cluster Randomized Designs as
a Function ofc¢,/c;and p

9.9 4.4 3.0 2.4 2.0 1.7
14.1 6.2 4.2 3.4 2.8 2.4
22.2 9.7 6.7 5.3 4.5 3.9
31.5 13.8 9.5 7.5 6.3 5.5
44.5 19.5 13.4 10.6 8.9 7.7

54.5 23.9 16.4 13.0 11.0 9.5
62.9 27.6 19.0 15.1 12.6 11.0
70.4 30.8 21.2 16.8 14.1 12.2
86.2 37.7 26.0 20.6 17.3 15.0
99.5 43.6 30.0 23.8 20.0 17.3



Optimal Design:

Cluster Randomized Designs

We obtain the m for the experiment by first picking n, and then selecting the m required to
achieve the required design sensitivity

Note that optimal cluster sizes are not integers (roundingis obviouslyneeded)
What surprises most researchers is how small the optimal cluster size often is

For example, ifthe relative cost ofclusters is 10 times that ofindividuals and the intraclass
correlation is 0.20, the optimal cluster size is 6

Fewresearchers would plan an experiment using only 6 students per school, many might think
that 20 — 50 students per school would be needed

The reason these results are possible is that design sensitivity depends so weakly on n



Optimal Cluster Size with Covariates:

Cluster Randomized Designs

With covariates the form ofthe optimal # is only slightly more complex
. J(cz][(l—fef)uﬂ]
0] c ( )
1 1—R2 )p

The qualitative implications are what you would expect

-The larger the (relative) cost ofeach cluster, (c¢,/c;) the larger n,becomes
-The larger the mtraclass correlation, the smallern, becomes
-The larger(l—Rf )/(I—Rzz) becomes, the larger n,becomes

As an empirical generalization, R,” is often biggerthan R >, so 1 - R*>1—-R/’

Therefore, the use ofcovariates often increases n,,



Optimal Cluster Size with Covariates:

Cluster Randomized Designs

This can also be betterunderstood in terms ofadjusted variance components
2
C (o2
no =\/(_2](%j
N ANCD)

The qualitative relationship with covariates is the same as that without covariates

-The larger the (relative) cost ofeach cluster, (c¢,/c;) the larger n,becomes

-The larger the (relative) covariate adjusted individual variance (o,,/ 0,,°), the larger n,,
becomes



Comments on Optimal Cluster Randomized

Designs

Consider optimal design information as informative but not determinative

Small cluster sizes are dangerous: Loss ofa few individuals can lead to loss ofan entire cluster
Round up to have slightly larger clusters than are necessary

Design parameters (costs, intraclass correlation, and R values)used are often approximate

Work on robustness suggests that underestimation ofintraclass correlations impairs efficiency
more than overestimation, so assume slightly larger mtraclass correlations than expected

The optimal design computed ifthe intraclass correlation is overestimated by 75%, 1s 90% as
efficient as the truly optimal design



The Multisite Design



Why Use a Multisite Design?

Multisite designs are potentially more efficient than individuallyrandomized designs

Multisite designs distribute the benefits oftreatment more widely than cluster randomized
designs (everysite receives some treatment)

Multisite designs require a smaller commitment by sites to treatment than cluster randomized
designs (not everyone gets randomized to treatment)

But
Multisite designs are administratively more complex
Contamination between treatment groups in the same site 1s a possibility

There maybe practical, political, or theoretical difficulties in assigning individuals in the same
site to different treatments



Sites, Clusters, and Blocks

The term “site “ in this design can be misleading

In experimental design, this design is called the (generalized)randomized block design to
emphasize that sites are a kind ofblock—a preexisting aggregate ofindividuals (you cannot, or
do not, randomlyassign individuals to blocks)

Blocks maybe sites like schools, clinics, or districts

Blocks mayalso be cohorts ofindividuals, randomization groups (when there are waves of
randomization), grade levels, or treatment providers (therapists, specialists, etc.), or other
matched groups ofindividuals

An extreme example 1s a design in which pairs of individuals are matched on covariates, then
one ofeach pairis assigned to each treatment group—in this case the pairs are “sites”

Note that this design uses the design principles of matchingand randomization



Fixed and Random Effects and Models for Generalization

Multisite designs introduce a conceptual complexity that does not arise in simpler designs (or
it is obscured, as in clusterrandomized designs)

What role should statistical inference playin the generalizations drawn from the study?
Alternatively, what, specific parameter are we estimating or testing hypotheses about?
(Statisticians would say, “What is the estimand?”)

In the multisite design there are at least two options:

1) Inferences are about the average treatment effect in the sites included in the
experiment

2)Inference are about the average treatment effect in the (super)population of sites
from which those in the experiment are a random sample



Fixed and Random Effects and Models for

Generalization

Option #1 (infer to sites included in the experiment)is called the fixed effects estimand
Option #2 (infer to the superpopulation ofsites)is called the random effects estimand

Because the statistical inference 1s about different parameters, the analyses required are
different and so are the factors that determine design sensitivity

Both can be technically correct, the choice must be based on extra-statistical considerations

Choosingrequires addressinga deep issue of scientific methodology ofthe limits of statistical
inference and its place in scientific inference



Multisite Design (Random Site Effects)

Recallthe idea of simple main effects oftreatments (site-specific treatment effects)

Let u’ and u¢, be the treatment and control mean parameters in site @ and let Y7 and Y¢, be
their estimates

Then the simple main effect parameter and estimate atsiteaare 8, =u "—p,“and T,=Y 7Y ¢
When sites have random effects, sites are treated as a sample from a population of sites

Thus, the simple mam effect parameters (the 6,) are a random sample from a population of
effects

The estimand is not the mean ofthe 6,°s that are observed, but the mean ofthe entire
population of 6 ‘s (including those that belongto sites that are not included in the experiment)

Ifthe 6 ‘s in the experiment were observed, we would know that the mean ofthe 6,°s would be
an estimate ofthe population mean ofthe 6 ‘s and the uncertamty ofthe sample mean would
depend on the variance ofthe 6 ‘s



Multisite Design (Random Site Effects)

In the multisite design, we do not observe any ofthe 6 ‘s directly (they are unknown
parameters)

But we do observe estimates ofthe 6 ‘s (the 7 ‘)

It follows that the uncertamty ofanyestimate ofthe mean ofthe 6, ‘s using the 7,‘s must
depend on the uncertamty (variance)ofthe 6 ‘s

The fact that the variance ofthe treatment effect estimate depends on the variance ofthe 6 ‘s
makes the analysis of multisite designs with random site effects more complex

This fact also makes multisite designs with random site effects less sensitive than if site
effects are fixed

The design parameter that describes the heterogeneity oftreatment effects across sites is the
effect size variance: Var{0, /o,°} = w,’ =1,%/0/



The Effect Size Variance w,?

Note that we have introduced another design parameter w,’

It maynot be a parameterabout which researchers have much experience or insight

The parameter w,’is best understood as the effect size variance across sites

Recall that the simple main effectis 6, =u ”—u “thus 6, /o, = (u,” — u,“)/o,is an effect size
The variance of 0, /o, is w,’ = 1,°/6,° so w,’ is truly the variance ofthe simple main effect sizes

Values of w,? depend on the treatment and the setting and they cannot be known or even
estimated until the experiment is conducted

Empirical values of w, (not w,?) from experiments in education and social science range from 0
to about 0.30, with the mean and median beingabout 0.12

Values of 0 are reported in about 30%-40% ofexperiments, but values ofexactly 0 are
somewhat suspect



Approximate Minimal Detectable Effect Size:

Multisite Designs (Random Site Effects)

It is useful to have an algebraic approximation to the minimum detectable effect size

nw; +2

oy =M,
mn

where M, 1s the constant depending on the degrees offreedom discussed before
Recall that M is a decreasing function of dfand M,<2.9 fordf> 16

It mighzt be surprising that the MDES does not involve the intraclass correlation, but only 7, and ¢,

(Via @,)
Recall that the treatment effect is a mean of simple main effects and the uncertainty ofthe simple
main effect parameters depends on their variance (z,°) and the estimation errorin 7, as an estimate
of §, which depends on o,°

Another way to think about it is that the simple main effects are differences between site-specific
means, both means contain the site effect, so the site effect disappears in the difference



Approximate Minimal Detectable Effect Size

Multisite Designs (Random Site Effects)

@, 1s the effect size variance of simple mam effects

It is useful to have an algebraic approxmation to the minimum detectable effect size

naw;=+2

oy =M,
mn

where M, 1s the constant depending on the degrees offreedom discussed before
Recall that M is a decreasing function of dfand M,<2.9 fordf> 16

It mighzt be surprising that the MDES does not involve the intraclass correlation, but only 7, and ¢,

(Via @,)
Recall that the treatment effect is a mean of simple main effects and the uncertainty ofthe simple
main effect parameters depends on their variance (z,°) and the estimation errorin 7, as an estimate
of §, which depends on o,°

Another way to think about it is that the simple main effects are differences between site-specific
means, both means contain the site effect, so the site effect disappears in the difference



Design Sensitivity and Design Parameters:

Multisite Designs (Random Site Effects)

The approximate MDES shows us how sensitivity of the multisite design depends on design
parameters

N 7 S PR
mn m
We see that J,,is decreasing function of m and n and an increasing function of w,?
We also see thatas m becomes large, 0,,tends to zero
Similarly, as w,’ becomes large, J,,becomes large
But, like in cluster randomized designs, as n becomes large 0,,tends to a positive limit

2
0
— 2
m



MDES: Multisite Designs (Random Site Effects)as a
Function of m, n, and w,

-—I_
. om | 0 [01]02]03]05]| | 0 |O0l]02]03]05
- p=10 |l =20
0.76 0.78 0.83 091 1.13 0.54 0.56 0.63 0.74 1.00
n 0.65 0.66 0.71 0.78 0.97 0.46 0.48 0.54 0.63 0.85
0.57 0.59 0.63 0.69 0.86 0.41 0.43 048 0.56 0.76
0.52 0.53 0.57 0.63 0.78 0.37 039 044 051 0.69
0.48 0.49 053 0.58 0.72 0.34 036 040 047 0.64
0.45 0.46 049 0.54 0.67 0.32 034 038 044 0.59
0.35 036 039 042 0.42 0.25 0.26 030 0.34 0.47
0.30 031 0.33 036 0.36 0.21 022 025 029 0.40
0.27 027 029 032 0.32 0.19 020 022 026 0.35
0.24 025 026 029 0.29 0.17 0.18 020 024 0.32
0.22 023 024 027 027 0.16 0.17 0.19 0.22 0.29
0.21 021 023 025 025 0.15 0.16 0.17 020 0.27




What if IChose a Multisite Individually Randomized Design,

But I Don’t Have the Required Design Sensitivity?

Consideradding covariates

The approximate minimum detectable effect size with covariates 1s

5. szlqz\/n(l_sz)wzz +2(1—R12)

mn

where M, 1s the constant depending on the degrees offreedom discussed before and R, is the
level 1 covariate-outcome correlation and Q, is the treatment effect-outcome correlation

Note that it maybe difficult to obtain covariates that explain a substantial amount oftreatment
effect variation, so you maynot be able to rely on a large value of O,°



Increasing Design Sensitivity:

Multisite Designs (Random Site Effects)

Design sensitivity can be increased by using covariates
Covariates can be added at eitherlevel 1 (the individuallevel) orlevel 2 (the site level)

The effect ofa covariate at a particularlevel can be understood as decreasingthe (effective)
variance at that level

Because the relevant level 2 variance component (w,’) mayhave the largest effect on
uncertaintyofthe treatment effect, level 2 covariates will generally have the largest effect on
design sensitivity

But

The relevant level 2 variance component (w,” = 7,%/0,%) is the effect size variance—the function
ofthe covariate is to explain this effect size variance (not outcome variance)

There 1s much less scientific knowledge about covariates that explain treatment effect
variance than about covariates that explain outcomes



Unbalanced Allocation in Multisite Designs (Random Site

Effects)

Suppose that the number ofindividuals allocated to treatment in the intervention group 1s fixed
at n’, but the number in the comparison group is not, i.c., n¢ = cn’, forsome ¢ > 1

The variance ofthe treatment effect estimate is therefore

R en' o’ +c+1
SE(]/OI):[\/ 2 T O'T

cmn

The degrees of freedom ofthe test statistic are unchanged (m — 1) but the noncentrality
parameter becomes

cmn'
Z'U:é‘ T _.2
cn @, +c+1

Note that as c tends to infinity, the limiting power is not 1 but is determined by the limiting A

value .
mn
A =0
- \/nTa)z2 +1




Unbalanced Allocation in Multisite Designs (Random Site

Effects)

The minimum detectable effect size in the unbalanced design is approximately

cn coz +c+1
o,

Note that as c tends to mﬁnlty, the limiting value of 9, 1s not zero but

T _2 2
/n @, +1 /a)2

o, =M, —~M,
mn m

the last approximation because n’w,’ is typically considerably larger than 1




Combining Unbalanced Allocation and Covariates:

Multisite Design (Random Site Effects)

Combiningunbalanced allocation and covariates, the approximate minimum detectable effect
S1ze 18

5AUM = Mmqu\/

cn' (I—sz)a)f +(c+1)(1—R22)

T
cmn

As ¢ becomes large o tends to

(1-0})es 1-R
5AUM = Mm1q2\/ + 2

T
m n



Optimal Allocation within Sites with Covariates:

Multisite Individually Randomized Design

With covariates the form ofthe optimal # is only slightly more complex

J[J[(lg)}

The qualitative implications are what you would expect

-The larger the (relative) cost ofeach cluster, (c¢,/c;) the larger n,becomes
-The larger the effect size variance, the smallern,becomes
-The larger(l—Rf)/(I—Qf)becomes, the larger n,becomes

As an empirical generalization, R, is often biggerthan Q,°,so 1 —R/?<1-Q,?

Therefore the use ofcovariates often decreases n,,



Optimal Allocations as a Function of¢,/c; and w,:
Multisite Individually Randomized Design
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Obtaming the Optimal Design:

Multisite Design (Random Site Effects)

We obtain the m for the experiment by first picking n, and then selecting the m required to
achieve the required design sensitivity

Note that optimal allocations are not integers (roundingis obviouslyneeded)
What surprises most researchers is how small the optimal allocation often is

For example, ifthe relative cost of sites is 10 times that ofindividuals and the effect size
variance is 0.10, the optimal clustersize 1s 7

Fewresearchers would plan an experiment using only 7 students per schoolto each treatment
group, many might think that 25 —30 students per school for each treatment would be needed

The reason these results are possible is that design sensitivity depends weakly on n (but the
dependence 1s stronger than in clusterrandomized designs)



Using Optimal Design Information

Optimal design calculations should inform but not completely determine design choices

Optmmal designs often have verysmall allocations that are practically difficult to achieve
because theymvolve singling out small groups ofindividuals for treatment and assessment of
outcomes

Very small optimal allocations maybe unwise to use because loss ofthose few individuals can
result in loss ofan entire site from the analysis (which can lead to serious reductions in design
sensitivity)

Even if attrition of individuals does not lead to loss ofsites, sites with very small numbers of
individuals can also lead to severe imbalance that can cause serious reductions in design
sensitivity



Multisite Cluster Randomized Design

Sometimes we have multiple sites (or blocks)but we can only assign intact groups within sites to
treatments

The intuition is that we want to assign to treatments within sites, but it is unfeasible or impossible
to assign individuals to treatments

For example,
we have multiple schools, but we must assign classrooms to treatments

we have multiple districts, but we must assign schools to treatments

This leads to a multisite cluster randomized design



Do Sites Have Fixed or Random Efftects?

This decision has important consequences for design sensitivity
Suppose that there are m sites, with p clusters ofsize n assigned to each treatment within each site

If sites have fixed effects, the mmimum detectable effect size 1s

2[1+(n-1)p, |

mpn

Oy = M2m(pl)\/

But if sites have random effects the minimum detectable effect size is

24+ 211 —1
Ou szl\/Pna)s - [ +(n )Pz]
mpn

Ifthe number of sites m is small (or is big), MR is much bigger than 6MFn




Must We Match Sampling

and Analysis Models?



The Issue

General Question: What happens when you design a study with
randomized groups that comprise three levels based on data
which do not account explicitly for the middle level?

Specific Example: What happens when you design a study that
randomizes schools (with students clustered mm classrooms m
schools)based on data for students clustered in schools?



Short Answer

Ignoring the top randomized level (e.g., schools)is never OK

Ignoring a middle level in the analysis has no impact on the accuracyofsignificance tests in a
balanced design

Ignoring a middle level in the analysis has little impact on the accuracyofsignificance tests in
most unbalanced designs

Variance component estimates for both levels maybe biased
The power ofthe two level analysis i1s therefore tricky to calculate

Thus, specifying sample sizes for the design can be tricky



How Can i1t be OKto Omit a Level?

The analysis of cluster randomized trials does a t-test on cluster means

Ifthere is two-level sampling, the cluster means have variance

(o /mI1 + (n—1)p;]

Ifthere is three-level sampling, (p subclusters perclusters, n individuals per subcluster)the cluster means have
variance

(o7/pn) [1 + (pn—1)p; + (n— Dp,]

The keypoint is that ,th% as sumgtion,s ofthe t-test are still valid—cluster means are independent and have
identical variances (in balanced designs), but the precision is different



Example: 3-level vs. 2-level MDES

Outcomes

Expressive Vocabulary (Spring)

Stanford 9 Total Math Scaled Score

Stanford 9 Total Reading Scaled Score

MDES
3-Level Model 2-Level Model
Unconditional Conditional Unconditional Conditional
0.482 0.386 0.495 0.311
0.259 0.184 0.259 0.184
0.261 0.148 0.264 0.150

Sources: The Chicago Literacy Initiative: Making Better Early Readers's

(CLIMBERSs) database and the S€hool Breakfast Pilot Project (SBPP) «

Note the similarities




variance components

		

				Table.  3-level vs. 2-level Model Comparison (1): Non-Standardized Uncondistional Variance Components

								Variance Components

								3-Level Model										2-Level Model

				Outcomes				School		Class		Student		Total				School				Student		Total

				Expressive vocab-spring				19.84		32.45		306.18		358.48				38.15				321.11		359.26

				Stanford 9 Total Math Scaled Score				115.14		36.40		1273.15		1424.69				131.39				1293.24		1424.63

				Stanford 9 Total Reading Scaled Score				108.75		158.95		1581.86		1849.56				181.77				1666.48		1848.25

				Sources: The Chicago Literacy Initiative: Making Better Early Readers study (CLIMBERs) database and the School Breakfast Pilot Project (SBPP) database.





mdes

		

				Table . 3-level vs. 2-level Model Comparison (2): MDES

								MDES

								3-Level Model								2-Level Model

				Outcomes				Unconditional				Conditional				Unconditional				Conditional

				Expressive Vocabulary (Spring)				0.482				0.386				0.495				0.311

				Stanford 9 Total Math Scaled Score				0.259				0.184				0.259				0.184

				Stanford 9 Total Reading Scaled Score				0.261				0.148				0.264				0.150

				Sources: The Chicago Literacy Initiative: Making Better Early Readers study (CLIMBERs) database and the School Breakfast Pilot Project (SBPP) database.
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Variance Component Estimates: 3-level vs. 2-level Analyses

Variance Components

3-Level Model 2-Level Model
Outcomes School = Class = Student Total School Student Total
Expressive Vocabulary (Spring) 19.84 | 3245 306.18 | 358.48 38.15 321.11 359.26
Stanford 9 Total Math Scaled Score 115.14 3640  1273.15 1424.69 131.39 1293.24 = 1424.63
Stanford 9 Total Reading Scaled Score =~ 108.75 | 158.95 1581.86 | 1849.56 181.77 1666.48 = 1848.25

Sources: The Chicago Literacy Initiative: Making Better Early Readers study (CLIMBERs) database and the School Breakfast Pilot Project (SBPP) datat



variance components

		

				Table.  3-level vs. 2-level Model Comparison (1): Non-Standardized Uncondistional Variance Components

								Variance Components

								3-Level Model										2-Level Model

				Outcomes				School		Class		Student		Total				School				Student		Total

				Expressive Vocabulary (Spring)				19.84		32.45		306.18		358.48				38.15				321.11		359.26

				Stanford 9 Total Math Scaled Score				115.14		36.40		1273.15		1424.69				131.39				1293.24		1424.63

				Stanford 9 Total Reading Scaled Score				108.75		158.95		1581.86		1849.56				181.77				1666.48		1848.25

				Sources: The Chicago Literacy Initiative: Making Better Early Readers study (CLIMBERs) database and the School Breakfast Pilot Project (SBPP) database.





mdes

		

				Table . 3-level vs. 2-level Model Comparison (2): MDES

								MDES

								3-Level Model								2-Level Model

				Outcomes				Unconditional				Conditional				Unconditional				Conditional

				Expressive vocab-spring				0.482				0.386				0.495				0.311

				Stanford9 Total Math Scale Score				0.259				0.184				0.259				0.184

				Stanford9 Total Reading Scale Score				0.261				0.148				0.264				0.150

				Sources: The Chicago Literacy Initiative: Making Better Early Readers study (CLIMBERs) database and the School Breakfast Pilot Project (SBPP) database.





Sheet3

		









Thank You!



	Practical Aspects of Design �for Group Randomized Trials
	Topics for Today
	Research Design is an Iterative Process
	Planning a Design
	Improving Design Sensitivity
	There is Always Potential Confounding
	We Have Focused on Three Basic Designs:�The Cluster Randomized Design, �the Multi-site Individually Randomized Design,  �the Multisite Cluster Randomized Design
	General Principles
	To Understand This Think About Variance
	To Understand This Think About Variance
	Interpretation
	Compare Multisite Individual Randomization to Cluster Randomization
	Compare Multisite Individual Randomization to Cluster Randomization
	Compare Multisite Individual Randomization to Cluster Randomization
	Why Cluster Randomization?
	Why Cluster Randomization?
	What is the Alternative to Cluster Randomization?
	Comparing Minimum Detectable Effect Sizes
	Values of Mdf�
	Calculating Mdf
	A Potential Problem with Multisite Designs: Contamination
	Contamination
	What if I Chose a Cluster Randomized Design, �But I Don’t Have the Required Design Sensitivity?
	Comparing Sensitivity with and without Covariates:�Cluster Randomized Designs
	Limiting Values of MDES:�Cluster Randomized Designs
	MDES in Cluster Randomized Designs with Covariates as a Function of R2 (n = 20)
	Combining Imbalance and Covariates:�Cluster Randomized Designs
	The Magic Number 0.7
	How Should I Pick the Cluster Sample Size?
	Cost Efficiency and Optimal Designs:�Cluster Randomized Designs
	Linear Cost Model
	Variable Costs at the Cluster Level
	Variable Costs at the Cluster Level
	Variable Costs at the Individual Level
	Linear Cost Model
	Optimal Cluster Size:�Cluster Randomized Designs
	Optimal Cluster Sizes for Cluster Randomized Designs as a Function of c2 /c1 and ρ
	Optimal Design:�Cluster Randomized Designs
	Optimal Cluster Size with Covariates:�Cluster Randomized Designs
	Optimal Cluster Size with Covariates:�Cluster Randomized Designs
	Comments on Optimal Cluster Randomized Designs
	The Multisite Design
	Why Use a Multisite Design?
	Sites, Clusters, and Blocks
	Fixed and Random Effects and Models for Generalization
	Fixed and Random Effects and Models for Generalization
	Multisite Design (Random Site Effects)
	Multisite Design (Random Site Effects)
	The Effect Size Variance ω22
	Approximate Minimal Detectable Effect Size:�Multisite Designs (Random Site Effects)
	Approximate Minimal Detectable Effect Size:�Multisite Designs (Random Site Effects)
	Design Sensitivity and Design Parameters:�Multisite Designs (Random Site Effects)
	MDES: Multisite Designs (Random Site Effects) as a Function of m, n, and ω2
	What if I Chose a Multisite Individually Randomized Design, �But I Don’t Have the Required Design Sensitivity?
	Increasing Design Sensitivity:�Multisite Designs (Random Site Effects)
	Unbalanced Allocation in Multisite Designs (Random Site Effects)
	Unbalanced Allocation in Multisite Designs (Random Site Effects)
	Combining Unbalanced Allocation and Covariates:�Multisite Design (Random Site Effects)
	Optimal Allocation within Sites with Covariates:�Multisite Individually Randomized Design
	Optimal Allocations as a Function of c2 /c1 and ω2:�Multisite Individually Randomized Design
	Obtaining the Optimal Design:�Multisite Design (Random Site Effects)
	Using Optimal Design Information
	Multisite Cluster Randomized Design
	Do Sites Have Fixed or Random Effects?
	��Must We Match Sampling �and Analysis Models?�
	The Issue
	Short Answer
	How Can it be OK to Omit a Level?
	Example: 3-level vs. 2-level MDES
	Variance Component Estimates: 3-level vs. 2-level Analyses 
	Slide Number 71
	Thank You!

