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What Are Longitudinal Experiments?
• Experiments with repeated 

measurements of an outcome on the 
same units.
– Could be schools, teachers, students, all of 

the above.
– We consider here experiments where individuals 

remain in a single treatment group throughout the 
study.

• Additional complexities are introduced if this is not the 
case.

– We need to be careful about our design/how we 
conceptualize treatment to meet this criterion 
while maintaining an RCT.
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Running example
• 3 years of math PD delivered to teachers in grades 3-5 in 

intervention group.
– i.e. T is delivered over course of 3 years
– Participating teachers are those who consented (not all 

teachers).
• Could be school level OR teacher level randomization
• Assume students don’t leave school, teachers don’t change 

grade, etc.
– i.e. idealized example.

• Numerical examples focus on impact of 1st year of PD on 
students of 3rd grade teachers in Y1 of implementation.
– But consider possible complications in interpretation as we 

move across 3 years of data collection.
• Construct validity of cause!

• Assume district uses something like iready:
– Collected 3 times per year so 9 times over course of 3 years.
– Label Y1 , … ,  Y9 . 3



A fundamental tension in educational 
research

• We often don’t know when effects of treatments (if 
they exist) will reveal themselves, or if those effects 
will be sustained.

• Nor do we know how much exposure/dose is 
necessary to have an impact.
– Especially interventions that are mediated 

through teachers.
• IES encourages you to measure education outcomes at multiple timepoints

to determine if short-term changes in education outcomes are sustained 
over time. If it is not possible to do this in the current study design, include 
activities that may help you apply to IES for an additional Follow-Up grant, 
such as maintaining contact with schools and study participants. 

– From FY 2020 IES Research Grant RFP:  Initial Efficacy and Follow-up section.
• Language in current version is worse. 4



However..
• System not very stable.

– Students move/skip grades/repeat grades.
– Teachers:

• Change grades
• Change jobs
• Leave profession

• Superintendents/principals/school board 
members change.

• If you use administrative data, systems getting 
better at tracking students.

• Not so much for teachers. 5



Difficulties in longitudinal experiments

• Very hard to maintain implementation and 
preserve randomization as time goes on.

• Best case scenario is probably…
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Example: TN class size (STAR)
Approaching the ideal…

1. Students randomized to small class, large class or large class 
with aide.

2. Students remain in same condition K-3rd grade.
3. Students randomized to classrooms/teachers.

– Teachers randomized to condition each year.
– Students re-randomized to teachers each year.
– Crucial, otherwise teacher effects confounded with treatment 

effects.

4. Funded by legislature, district-wide for participating districts.
– No worries about superintendent/principal buy-in.
– Student mobility not-problematic.

5. Not mediated through teachers (e.g. not teacher PD)
– Teacher attrition not-problematic. 7



Fundamental tension
(for all non-STAR researchers)

• I don’t have solution…
• Many interesting questions about longitudinal 

experiments:
– How best to design them?

• E.g. level of randomization.

– Is the additional information worth the internal 
validity cost due to attrition?

– Is it more important to follow schools or teachers 
or students over time?

• “Schools” is far and away the easiest but maybe the 
least interesting. 8



Reasons to collect longitudinal data in 
experiments

1. More than one discrete endpoint is of 
interest. Questions include:

a) How long does it take for effect of intervention to 
“take hold”? (T tries to change teacher behavior).

b) If there is an initial effect of the intervention, does it 
“fade out” over time? (early childhood interventions).

Examples:  
i)  Experiments with immediate and delayed posttests.
ii) Experiments that track individuals over many 
performance periods.

– Eg. TN class size.
• Kids have been followed up to adulthood.  Chetty’s work. 9



Reasons to collect longitudinal data in 
experiments

2. Increase the precision (reliability) of 
measurement.

Example:  Direct observations of teacher 
behavior.

Why are repeated measurements necessary?
• Too much noise in a single measurement.

– Observer coding varies (inter-rater reliability <1) 
– Behavior itself varies.

• MET study (Gates):
– Not only are multiple observers needed.
– Teachers need to be observed multiple times.
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Reasons to collect longitudinal data in 
experiments

3. The time course of treatment effect (growth 
trajectory) is of interest (e. g., an intervention is 
intended to increase the rate of vocabulary 
acquisition in preschool children).

– That is, the intervention explicitly aims to impact 
growth rate.

– Everyone will eventually learn the words, we want to 
change how fast kids learn them.

– (Differential) Curvature in growth function may 
contain important information about when 
intervention “takes hold”.
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Example

• Spse BAU curve is quadratic.
• We want to know:

– Does treatment simply shift curve?
• i.e. Same effect on slope and curvature.

– Or does it flatten curve?
• Possibly resulting in negative treatment effects early 

and positive one later.
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Case 1: shift
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Case 2: flatten
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Summary

• Three distinct reasons one might consider 
collecting longitudinal data within context of 
experiments.

1. Status of outcome at different times is of 
interest.

2. General measure of status desired but no 
one measure sufficiently dependable.

3. Want to look at growth trajectories over 
time.
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The ability to answer additional questions 
(about growth, fade-out, latency of effects) or to 
improve reliability are the “pros” of longitudinal 
measurement.

What are the cons?
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1. It will cost more money to follow people for a 
longer period of time/take more measurement.  
Is the benefit worth the expense?

– Do I get enough additional knowledge from the data 
collected at the additional time points?

• In one sense more data is always better.
• However, trying to collect lots of data points may 

restrict our ability to do other things, eg.
– Recruit more schools.
– Spend some time validating fidelity measures.
– Etc.

17

Reasons to hesitate



Reasons to hesitate

2. Attrition 
In educational studies tracking students and 
teachers across years can be particularly 
problematic.
• Espec. middle school years for students.

• Transition to next school non-standard (8th, 9th, etc.)
• Espec. Elementary for teachers.

– Teachers often change grade level.
• Might need to consider (sometimes expensive) 

incentives to keep folks in studies.
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Consequences of attrition

• In cross sectional study it is undesirable.
• In longitudinal study it is really undesirable.

– Throwing out a case b/c student dropped out B4 
fourth year means you lose 3 years of data

• you may not necessarily do this (e.g. growth modeling 
approaches can handle unbalanced data).

– However, bias may be creeping into your carefully designed 
experiment.

• It may be worth trying to track the folks who move in 
order to avoid this. But this will get expensive.
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Reasons to hesitate

3. Opportunities for circumstances to intervene 
to potentially undermine randomization.

a) Parents may lobby to get children into a 
particular group in the second year of a study.

b) Administrators may intervene to place kids in 
certain classrooms (C or T) in the second year of 
a study.

*Of course, these may be more or less of an issue 
depending on your design and objectives.
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Important questions
1. Do you want teachers to have multiple years to implement 

(to get familiar with treatment)?
• May need longitudinal models for teacher outcomes but not 

student outcomes.
– Repeated cross-sectional design for student outcomes. Handle with fixed 

effect for time.

2. Do you want to follow the same students over time?
• You need longitudinal models.
• ITT models (only ones obviously valid)- code treatment exposure 

based on initially randomized condition.

3. Do you need students to have multiple years of exposure to 
same condition?

• You need to figure out how to make this happen and still preserve 
randomization.
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Tough (related) questions

1. How much exposure to the “special sauce” is 
necessary (for teachers/students) in order to 
see effects?
– Can we maintain treatment-control contrast long 

enough? 

2. How long after initial/sustained exposure 
until effect shows up on measures?

3. If effects are evident by time=t, will they be 
sustained until time=t+x?
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Assume longitudinal growth of students is what you 
care about.

Possible Solutions to tough questions.
1. Convince yourself one year of student 

exposure to treatment is sufficient AND
– You aren’t worried about T and C students 

exposed to students/teachers in opposite 
condition during longitudinal follow up.

2. Get schools to let you randomize students to 
classrooms in subsequent years in order to 
keep in same condition.
– Good luck with that!
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Possible Solutions to #3
(less satisfying, doesn’t really answer Q of itnerest)

3. Redefine causal effects being estimated.
– Approach outlined in WWC standards for RCTs 

with cluster level assignment.
– If risk of bias due to individuals entering or exiting 

clusters after random assignment, then:
– We can still get unbiased estimate of 

randomization effects on clusters (but can’t 
attribute effects to changes in individuals, could 
be due to compositional changes in clusters).

– At best meets standards “with reservations”.
24



Multilevel Models for 
longitudinal data



Modeling longitudinal data
• We can view longitudinal data as a type of 

multi-level model.
• Hierarchical/multi-level models:
a) Can solve the problem of students nested 

within classrooms and schools.
b) Can also help solve problem of 

measurements nested within individuals.
– Particularly useful with unbalanced 

measurement occasions

• Hence will use HLM notation in our discussion 
of longitudinal experiments 26



It is OK to keep it simple

27

Unless different outcomes (measured on the same 
individuals) are being compared, you don’t have to 
use longitudinal methods/multilevel models!
– You could measure outcomes at different times and look at them 

one at a time.

But, if different outcomes (measured on the same 
individuals) are being compared, outcomes are not 
independent.

This dependence must be accounted for
(for instance, by using a multi-level model with a 
“measures” level)



Recall
• Three distinct reasons one might consider 

collecting longitudinal data.
1. Status of outcome at different times is of 

interest.
– “Discrete endpoints”

2. General measure of status desired but no 
one measure sufficiently dependable.

– “Average several measures”

3. Want to look at growth trajectories over 
time. 28



Running example

• Suppose we want to see if treatment effect at 
end of 3rd year (Y9) is same as treatment effect 
at end of 1st year (Y3).
– Or we could compare Y6 and Y3.
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Discrete Endpoints, Schools Assigned
(Comparing Early and Delayed Outcome)

Level 1 (measure level)
Yijk = β0jk + β1jkDijk + εijk ε ~ N(0, σW

2)

Level 2 (individual level)
β0jk = γ00k + η0jk

η ~ N(0, ΣI)
β1jk = γ10k + η1jk

Level 3 (school level)
γ00k = π000 + π001Tk + ξ00k

ξ ~ N(0, ΣS)
γ10k = π100 + π101Tk + ξ10k

Note that the η0jk’s and η1jk’s can be correlated as can the ξ00k’s and ξ10k’s
Most interpretable to code Dijk as +0.5 and -0.5.  Then β0jk is individual level 

avg. of measures and β1jk is individual level difference between early and 
delayed measure.

30



Discrete Endpoints, Schools Assigned
(Testing for Fade-out/increased effect)

Level 1 (measure level)
Yijk = β0jk + β1jkDijk + εijk

Level 2 (individual level)
β0jk = γ00k + η0jk

β1jk = γ10k + η1jk

Level 3 (school level)
γ00k = π000 + π001Tk + ξ00k

γ10k = π100 + π101Tk + ξ10k

31

Π001= Avg TE across both 
measurements

Π101= AVG Difference b/tw TE at 
first and second measurements (i.e
fade-out or increased effect)

Variation in avg. of 
measures across schools

Variation in difference between 
measures across schools



Discrete Endpoints
(Comparing Early and Delayed Outcome)

Note that, in this model, the εijk’s can be interpreted as measurement 
errors.

Thus, the η0jk‘s are between individual differences in the “true” early 
scores (an analogous statement is true for the delayed scores).  So, 
the intraclass correlation
ρI = σI

2/(σI
2 + σW

2) is a (individual level) reliability coefficient (in 
measurement sense of reliability).

Then the ξ00k‘s are between-school differences on the average true 
score quantities

the intraclass correlation
ρS = σS

2/(σs
2 + σI

2 + σW
2) can be thought of as a (school level) 

reliability coefficient.
NB: These interpretations assume homogeneous measurement error 

across early and delayed time points. 
32



Discrete Endpoints, Schools Assigned.
TEs at distinct times of interest

(but you want to account for correlation between measures)
Suppress intercept.

Level 1 (measure level)
Yijk = β0jk Eijk+ β1jkDijk + εijk

Level 2 (individual level)
β0jk = γ00k + η0jk

β1jk = γ10k + η1jk

Level 3 (school level)
γ00k = π000 + π001Tk + ξ00k

γ10k = π100 + π101Tk + ξ10k

33

Π001= Avg TE at first 
measurement

Π101= Avg TE at second 
measurement

Variation in first measure 
avg. across schools

Variation in second measure avg
across schools



Discrete Endpoints, Individuals Assigned
(Comparing Early and Delayed Outcome)

Level 1 (measure level)
Yijk = β0jk + β1jkDijk + εijk ε ~ N(0, σW

2)

Level 2 (individual level)
β0jk = γ00k + γ01kTj + η0jk

η ~ N(0, ΣI)
β1jk = γ10k + γ11kTj + η1jk

Level 3 (school level)
γ00k = π000 + ξ00k
γ01k = π010 + ξ01k ξ ~ N(0, ΣS)
γ10k = π100 + ξ10k
γ11k = π110 + ξ11k 

Note that the η0jk’s and η1jk’s can be correlated as can the ξ00k’s, ξ00k’s, ξ10k’s, 
and ξ11k’s
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Discrete Endpoints, Individuals Assigned
(Comparing Early and Delayed Outcome)

Level 1 (measure level)
Yijk = β0jk + β1jkDijk + εijk

Level 2 (individual level)
β0jk = γ00k + γ01kTj + η0jk

β1jk = γ10k + γ11kTj + η1jk

Level 3 (school level)
γ00k = π000 + ξ00k
γ01k = π010 + ξ01k
γ10k = π100 + ξ10k
γ11k = π110 + ξ11k 

35

Π010= Avg TE across both 
measurements

Π110= Difference b/tw avg TE at 
first and second measurements (i.e
fade-out or increased effect)

Variation in avg. TE across both 
measures and across schools

Variation in difference b/tw avg TE at first 
and second measurements across schools



• If additional discrete endpoints are of 
interest, one can add additional dummy 
variables at level 1.
– However, I’d prefer just using separate 

models.
• By being creative with coding can look at 

whatever measurement contrasts are of 
interest.
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Recall
• Three distinct reasons one might consider 

collecting longitudinal data.
1. Status of outcome at different times is of 

interest.
– “Discrete endpoints”

2. General measure of status desired but no 
one measure sufficiently dependable.

– “Average several measures”

3. Want to look at growth trajectories over 
time. 37



2. Average of Several Measures
Continue to assume three levels

Measures are nested (clustered) within individuals, individuals 
are nested (clustered) within schools

Level 1 (measures within individuals)

Level 2 (individuals within schools)

Level 3 (schools)

Let Yijk, the observation on the ith measure for the jth person in 
the kth school with p measures per individual

NB:  Note, covariates at first level wouldn’t really make sense. Why?

38



Average of Several Measures
(Treatment Assigned at the School Level)

Level 1 (measure level)

Yijk = β0jk + εijk ε ~ N(0, σW
2)

Level 2 (individual level)

β0jk = γ00k + η0jk η ~ N(0, σI
2)

Level 3 (school level)

γ00k = π000 + π001Tk + ξ00k ξ ~ N(0, σS
2)

Note that π001 is the treatment effect

39



Assumptions in above (and 
subsequent) models

• No change in “true” score across 
measurement occasions 

OR
• If there is a change in true scores, it is OK 

to average across these changes to create 
a composite outcome and this “average” is 
what we want to measure (i.e. it is 
sufficiently interpretable).

40



Average of Several Measures
(Treatment Assigned at the Individual Level)

Level 1 (measure level)

Yijk = β0jk + εijk ε ~ N(0, σW
2)

Level 2 (individual level)

β0jk = γ00k + γ01kTjk + η0jk η ~ N(0, σI
2)

Level 3 (school level)

γ00k = π000 + ξ00k ξ ~ N(0, ΣS)
γ01k = π010 + ξ01k

Note that π010 is the treatment effect (and it may vary across 
schools).
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Average of Several Measures
Note that, in this model, the εijk’s can be interpreted as like (item 

level) measurement errors

Then the β0jk‘s can be interpreted as individual level “true” 
scores (for the jth person in the kth school)

Thus the η0jk‘s are between individual differences in these “true” 
scores and the quantity ρI = σI

2/(σI
2 + σW

2/p) is a (individual 
level) reliability coefficient

Then the ξ00k‘s are between-school differences on these 
quantities and the quantity ρS = σS

2/(σs
2 + σI

2 + σW
2/p) is a 

true (school level) reliability coefficient

42

Notice:  There are p measures at level 1, so the level 1 
variance component is divided by p when computing reliability.



Running example

• We could fit a model with all 9 measurements 
nested within students.
– Might be worried about interpretability of this 

(averaging across three years where growth may have 
occurred).

• Could combine idea with idea of previous section 
(discrete endpoints).
– Ie. Average within year but not across year
– Then you’d use the models from previous section 

(with dummies)
• Two dummies if you want all three years.
• I.e. the model on next slide
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Discrete Endpoints, Schools Assigned
(Comparing Y1 to Y2 to Y3 outcomes, 3/year)

Level 1 (measure level)
Yijk = β0jk + βDjkDijk + βEjkEijk + εijk ε ~ N(0, σW

2)

Level 2 (individual level)
β0jk = γ00k + η0jk

η ~ N(0, ΣI)
βDjk = γD0k + ηDjk

βEjk = γE0k + ηEjk

Level 3 (school level)
γ00k = π000 + π001Tk + ξ00k

ξ ~ N(0, ΣS)
γD0k = πD00 + πD01Tk + ξD0k

γE0k = πE00 + πE01Tk + ξE0k
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Side note

• One could simply average up all the measures 
and ignore the measure level altogether.

• This is perfectly acceptable.
• The virtue of the hierarchical modeling 

approach is mainly:
1. the ability to get reliability coefficients from the 

variance components.
2. can easily handle case where not everyone has 

same # of measurements.
45



Recall
• Three distinct reasons one might consider 

collecting longitudinal data.
1. Status of outcome at different times is of 

interest.
– “Discrete endpoints”

2. General measure of status desired but no 
one measure sufficiently dependable.

– “Average several measures”

3. Want to look at growth trajectories over 
time. 46



Before you gather data for growth 
modeling

1. Be sure the outcome variable that you will 
measure repeatedly can be compared across 
time (vertical scaling).

– Can also be important for comparing early and 
delayed outcomes, depending on time lag.

• Example:  1st grade vocabulary test.
– Given to 1st graders it may measure “vocabulary 

knowledge”.
– Given to 5th graders it may measure 

“attentiveness/ability to tolerate boredom”.
47



Importance of vertical scaling

“Educational measurement practitioners commonly 
violate the basic principle: “When measuring change, 
don’t change the measure.” Unlike instruments for 
measuring physical characteristics (e.g., height or 
weight), our instruments for measuring status and 
growth in educational achievement must change in 
order to preserve the validity of the measurements 
themselves.”

--From Patz (2007) Vertical Scaling in Standards-Based 
Educational Assessment and Accountability Systems.  
Published by Council of Chief State School Officers.
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2. Decide on a metric for time
• In most studies we can define time in many 

ways.
1. Child welfare study.

– Sequential recruitment.  Thus time scaling options 
are:

• Time from project start (Oct 2013).
• Time from entry into DCF system.

– Case is opened but screening, etc. occurs before enrollment 
into study.

• Time from client enrollment/randomization (seems like 
best choice to me).
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More examples

2. Studies of school children.
– Chronological age.
– School grade.

3. Studies of psychotherapy.
– Weeks since entry into therapy.
– Number of sessions.
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Different outcome objectives=different 
time metrics

(Singer and Willett, 2003)

• IES RFA tells us to get measures sensitive to change.
• Here we want time metrics sensitive to change.
Imagine studying cars:
• Assess factors impacting appearance (rust, seat 

wear)  time since manufacture.
• Assess factors impacting “general wear and tear” 

(tire tread, belts) miles driven.
• Assess the starter/ignition  trips driven.

51



3. Decide on number and spacing 
of measurements 

? Equally spaced measurement occasions.

? Time structured (everyone measured at same 
values of time).
 More important for SEM or ANOVA analyses than 

the HLM analyses we will discuss here.

? Balanced (the same number of measurements 
taken on each person).
• You may not be able to totally control this.
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• How you define time can impact whether data 
is considered time-structured or not.

Example:
• Child welfare study will “capture” data at 6 

month intervals from beginning of study.
• If we count time from study onset  data 

would be time-structured.
• If we count time from client enrollment 

(better idea)  data would be time-
unstructured.
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3. Growth Trajectories
The problem of fitting growth trajectories is complicated 

It requires choosing a form for the growth trajectories

You should have a basic form in mind going into the analysis 
based on: (i) a theoretical/conceptual model and (ii) your 
study objectives (what you want to learn from growth 
model).

Do you just want to know if there is a “general upward 
trend”(linear model may be sufficient)?

Is it also important to know the rate of growth at different 
time points (might need quadratic or cubic growth)?
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General principle
Occam’s razor
• All other things equal, Simpler is better.
• More complicated model= harder to estimate 

precisely=larger sample size required to estimate 
parameters precisely.

• Additional random effects (and covariance parameters) 
in model make this especially true.

In other words, you might want to default to a linear or 
quadratic  model and be parsimonious in adding random 
slope parameters.

Possibly, be willing to modify form of the model based on 
an initial graphical exploration of the data.
– However, this is not as easy as it may seem.
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(ALDA, Section 3.2, pp. 49-51)

 



1 1.5 2
AGE

50

75

100

125

150
COG






1 1.5 2
AGE

50

75

100

125

150
COG






1 1.5 2
AGE

50

75

100

125

150
COG




1 1.5 2
AGE

50

75

100

125

150
COG




1 1.5 2
AGE

50

75

100

125

150
COG






1 1.5 2
AGE

50

75

100

125

150
COG

 


1 1.5 2
AGE

50

75

100

125

150
COG






1 1.5 2
AGE

50

75

100

125

150
COG

ID 68 ID 70 ID 71 ID 72

ID 902 ID 904 ID 906 ID 908

1 1.5 2

AGE

50

75

100

125

150
COG

1 1.5 2

AGE

50

75

100

125

150
COG

1 1.5 2

AGE

50

75

100

125

150
COG

1 1.5 2

AGE

50

75

100

125

150
COG

1 1.5 2

AGE

50

75

100

125

150
COG

1 1.5 2

AGE

50

75

100

125

150
COG

1 1.5 2

AGE

50

75

100

125

150
COG

Initial Graphical explorations:
Make some plots like this
(adapted from Singer and Willet Applied Longitudinal Data Analysis)

Do we need a quadratic effect?
Or is it just noise?

Do we need randomly varying slopes?
Covariance between slope and initial 
status?



What to make of this?

• Very hard to say how much of what you see in 
these plots is “signal” and how much is 
“noise”.

• My advice:  Only deviate from initial plan if 
evidence is fairly overwhelming that you need 
to.
– For “pre-registration of protocol” reasons if for 

nothing else.
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• Best not to focus on “exploratory aspects” of 
experimental study.
– Eg. Extensive data exploration to determine the 

shape of a growth curve 
– These explorations should be done prior to 

experiment so you come into study with pretty 
good idea of model that you want to compare 
across the groups randomized.

• Experiments help with causal attribution.
• They don’t help us to build a good model for 

anything not having to do with treatment 
assignment.
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Growth Trajectories (forms)
Many forms are possible, but polynomials are 

conventional for two reasons:

• Any smooth function is approximately a 
polynomial (Taylor’s Theorem).
– And approximately linear if you examine function 

over short enough period of time.

• Polynomials are simple.
– In particular, they are linear in the parameters, 

which allows Inference based on normal theory.

59



What is a Polynomial Model?
Yijk = β0jk + β1jktijk + β2jktijk

2 + β3jktijk
3 + …+εijk

tijk is defined as a measure of time for the jth person in the kth

school on the ith measurement occasion.

Rarely do we go beyond a cubic function.

“jk” subscript implies each person has unique growth curve.  We 
want to model these curves and the variation in these curves.

Note that the measurements do not have to be at exactly the 
same time for each person (time-unstructured OK).
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How do we interpret these coefficients?

Yijk = β0jk + β1jktijk + β2jktijk
2 + β3jktijk

3 + …+εijk

• β1jk tells us the linear growth rate.

• β2jk tells us the quadratic growth rate.

• β3jk tells us the cubic growth rate.

• This is true, but not necessarily helpful.  How do 
we interpret a linear growth rate when there are 
also quadratic and cubic terms?
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Centering

• We typically center the measurements at 
some point for convenience
– Common choices are:
1. Middle
2. Beginning
3. End

• Centering strategy determines the 
interpretation of the coefficients of the 
growth model.
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Understanding a Polynomial Model

Yijk = β0jk + β1jktijk + β2jktijk
2 + β3jktijk

3 + εijk

How do we interpret the coefficients?

β0jk is the intercept at the centering point

β1jk is the linear rate of growth at the centering point 
• It is not the linear rate of growth anywhere else.

β2jk is the acceleration (rate of change of linear growth) at the 
centering point.

• It is not the acceleration anywhere else.

β3jk is the rate of change of the acceleration (often negative 
leading to a gradual flattening out of the growth curve).

63



Why cubics so important?

• Negative cubic term ensures growth doesn’t 
explode.

• Many natural growth processes have a “S” 
shape.

• We can produce this basic shape with a cubic.
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Understanding a Polynomial Model
Consider the quadratic growth model to understand changes in  

growth rate with mean centering:

Thus you can see that the linear growth rate at time t is

In other words, the linear growth rate increases with t (assuming 
β2jk is positive) and the only place where the linear growth 
rate is β1jk is the middle.

NB:  We’ve rewritten quadratic growth model as a linear growth 
model where rate of growth depends on t.
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Understanding a Polynomial Model

Thus β1jk is the linear rate of growth at the centered value (here, 
the middle)

If β2jk > 0, the linear growth rate will be larger above the 
centered value and smaller below the centered value

Centering at other values than the middle can make sense if that 
is where growth trajectory is of interest and if the model fits 
the data.
– Eg. Coding “0”= first time point, “1”=second time point, … is centering 

at the beginning.

For example, centering at the end gives coefficients with 
interpretable rates at the end of the growth period.
– Eg. You care most about how kids are doing at the end of the study.
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Understanding a Polynomial Model

Consider the cubic growth model to understand changes in the 
acceleration of the growth rate with mean centering

Thus you can see that the acceleration at time t is

In other words, the acceleration increases (decreases if β3jk is 
negative) with t and the only place where the acceleration is
β2jk is the middle
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Understanding a Polynomial Model

Thus β2jk is the acceleration of growth at the centered value 
(near the middle)

If β3jk < 0, the acceleration will be larger below the centered 
value and smaller above the centered value

Again, centering at other values than the middle can make sense 
if that is where growth trajectory is of interest and if the 
model fits the data
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No Growth (centering irrelevant)
β0 = 5, β1 = 0.00, β2 = 0.00, β3 = 0.00
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Linear Growth (centered at 5)
β0 = 5, β1 = 1, β2 = 0.00, β3 = 0.00
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Quadratic Growth (Centered at 5)
β0 = 5, β1 = 1, β2 = 0.05, β3 = 0.00
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Cubic Growth (Centered at 5)
β0 = 5, β1 = 1, β2 = 0.05, β3 = -0.01
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show max 
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about 0.
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At 4, linear growth 
rate is 0.87 



Linear, Quadratic, and Cubic Growth
β0 = 5, β1 = 1, β2 = 0.05, β3 = -0.01,
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Notice:  Near 
the centering 
point all growth 
is linear

*So you have 
maximal 
robustness to mis-
specified model at 
centering point.
* You also have 
maximum 
precision of 
estimated of fitted 
value 



Selecting Growth Models
Several considerations are relevant in selecting a growth model

First is how many repeated measures there are: The maximum 
degree is one less than the number of measures

(linear needs 2, quadratic needs 3, etc.)

However the estimates of growth parameters are much better if 
there are a few additional degrees of freedom 

But the most important considerations are:
(i) Research questions.
(ii) Whether the model fits the data!

– Unfortunately, as explained earlier, making this determination is not 
that easy.
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Selecting Growth Models
Individual growth trajectories are usually poorly 

estimated
– Even with as many as 8 time points, to estimate 

cubic growth is like estimating a multiple regression 
with 4 parameters from 8 data points for each 
person.

– More data points would help, but they can be 
expensive.

HLM models estimate average growth 
trajectories (via average parameters) and 
variation around that average: These are 
much more stable.
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Selecting Growth Models
• Usually bad idea to let empirical data entirely guide the 

choice of the model. 

– There is too much noise to let data guide you in its entirety.   
There will usually be multiple curves that fit just about 
equally well.  

– Let both theory, research questions and data guide your 
model choice.

Advice: 
1. If your  initial (normative, theory based) choice seems an 

extremely poor fit, revise model.
2. However, one need not be a slave to “fit statistics” that may be 

sensitive to distributional assumptions that may not be met.
3. Overfitting (modeling noise) and underfitting (missing an 

essential structural feature of the curve) are both dangers.
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Estimating and Interpreting individual 
growth curves

Estimates of individual growth curves can usually be 
greatly improved by using empirical Bayes methods 
to borrow strength from the averages.
* “shrinkage” estimates which are effectively 
weighted average between individual growth curve 
and average growth curve.

This makes the most sense if all the individuals in the 
groups are sampled from a common population.

It can be problematic if some individuals are 
dramatically different.
– But, hard to know if this is the case just by looking at 

data, for reason just mentioned (noise in the data). 77



Implications of heterogeneity in 
individual growth curves

• IF there is a lot of heterogeneity how do we 
interpret the “average” curves that we 
estimate?
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Implications of heterogeneity in 
individual growth curves

• No easy answer, however:
1. These are the situations where it may be quite 

interesting to look at the covariance between the 
random effect terms.

– E.g. do the kids that have high linear growth 
(high growth near the centering point) also have 
lower quadratic terms?

• Is there a “catching up” effect? OR
• If you fall way behind are you doomed?
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Back to Experiments

• However, things like:
1. Model selection (randomization can’t help us 

choose the right model).
2. Interpreting covariance parameters
are ideally not the main foci of experiments. 
EXCEPT
• We “might” be interested in how treatment 

influences the covariance parameter. 
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Selecting Analysis Models
One issue is selecting the growth model to characterize growth

A different, but related, issue is selecting how treatment should 
impact growth

Should it impact linear growth term?

Should it impact the acceleration?

Which impact is primary?  (e.g. for power and 
secondary/primary research question purposes).

How does looking at multiple impacts weaken the design?
– multiple comparisons.

What if impacts are in opposite directions?
– How do we interpret and report this? 81



Please show me a slide with lots 
of Greek letters that shows what 

all this growth modeling looks 
like in HLM, you ask?

I would not want to disappoint…



Longitudinal Experiments Assigning 
Treatment To Schools (quadratic model)

Level 1 (measures)

Yijk = β0jk + β1jktijk + β2jktijk
2 + εijk

Level 2 (individuals)

β0jk = γ00k + η0jk η ~ N(0, ΣI)
β1jk = γ10k + η1jk
β2jk = γ20k + η2jk

Level 3 (schools)

γ00k = π000 + π001Tk + ξ00k ξ ~ N(0, ΣS)
γ10k = π100 + π101Tk + ξ10k
γ20k = π200 + π201Tk + ξ20k

NB : If time centered at the beginning (time of randomization), 
π001 should be 0 in experiments. Why? 83



Longitudinal Experiments Assigning 
Treatment To Schools (quadratic)

This model has three trend coefficients in each growth trajectory

Note that there are 3 random effects at the second and third 
level

This means that 6 variances and covariances must be estimated 
at each level

This may require more information to do accurately than is 
available at the school level

It is often prudent to fix some of these effects because they 
cannot all be estimated accurately.
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Longitudinal Experiments Assigning 
Treatment Within Schools (quadratic)

Level 1 (measures level)
Yijk = β0jk + β1jk t + β2jk t2 + εijk ε ~ N(0, σW

2)
Level 2 (individual level)

β0jk = γ00k + γ01kTj + η0jk η ~ N(0, ΣC)
β1jk = γ10k + γ11kTj + η1jk
β2jk = γ20k + γ21kTj + η2jk

Level 3 (school level)
γ00k = π000 + ξ00k ξa0 ~ N(0, ΣS)
γ01k = π010 + ξ01k ξa1 ~ N(0, ΣTxS)
γ10k = π100 + ξ10k
γ11k = π110 + ξ11k
γ20k = π200 + ξ20k
γ21k = π210 + ξ21k
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Covariance structure for 
control group schools (if “Tj” is 
“0” or “1” coded). 

Covariance structure of 
treatment effects.



Longitudinal Experiments Assigning 
Treatment Within Schools

This model has three trend coefficients in each growth trajectory

Note that there are 6 random effects at the third level

This means that 15 variances and covariances must be estimated 
at the third level

This requires a great deal of information to do accurately

It is often prudent to fix some of these effects because they 
cannot all be estimated accurately

However there is some art in this, and sensitivity analysis is a 
good precaution
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Covariates
Covariates can be added at any level of the design

But remember that covariates must be variables that 
cannot have been impacted by treatment 
assignment

Thus time varying covariates (at level 1) are particularly 
suspect since they may be measured after treatment 
assignment.
– By “suspect” I mean their inclusion will preclude 

interpreting model coefficients as unbiased causal effects.
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Time varying “covariate” example
• Intervention involves different forms of 

psychotherapy.
• Depressive symptoms measured after each 

session.
• Case #1:  some sessions scheduled for 45 

minutes, others for 1 hour.
• Case #2: some sessions “Cut short” due to 

patient or doctor request (so some are 45 min, 
others 1 hour).

• How does distinction impact our use of the variable?
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And Another Example

• Students changing schools during the course 
of the study.

• Should we control for school they are 
attending at post-test (as opposed to school 
attending when randomized)?
– E.g. add fixed or random effect of this school to 

our models?
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Summary of growth modeling good 
practices

1. Make sure measure used appropriate for 
studying growth.

– Vertical scaling.

2. Should have some theoretical/conceptual 
model that helps pick functional form of 
growth model.

3. Be willing to modify initial model based on 
visual inspection of data.

– Although frequently this will be uninformative.
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Summary of growth modeling good 
practices

4. Compare model predicted values to actual 
values.

– Make sure not too discrepant.

5. Make sure you have enough data to estimate 
the model you specify.

– If not, fit a simpler model.
– Ideally, realize this ahead of time and don’t waste 

resources on the wrong things.
• ie. more measures vs. more schools or subjects.
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• Experiments are expensive.
• Worth it (we hope) because of ability to 

produce clear causal conclusions.
– We can give observed differences b/tw T and C 

causal interpretations.

• Ideally we would NOT cloud our ability to 
observe treatment effects.
a) By trying to estimate models that are too 

complex to estimate well.
b) By analyzing data contaminated by attrition.
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If time

WWC and growth modeling



WWC and growth modeling

• What works clearinghouse (WWC) has 
standards for evaluating educational studies.
– Low attrition RCTs and certain RD studies are only

studies that can meet standards without 
reservations.

• What does WWC say about growth models?
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WWC and growth models

• “growth curve analyses do not typically provide 
point-in-time impact estimates. However, the WWC 
will request the data needed from authors to 
calculate effect sizes—and baseline equivalence, if 
required—at each point in time (WWC standards 
version 4.1, p. 32).”
– In other words, WWC is going to take your growth curve 

analysis and do its best to reconstruct what estimate 
would have been at each time point separately.
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If time: Revisit running example

What sorts of things can go wrong as 
educational RCTs move into Y2 and 

Y3 of implementation?



Scenario #1: 
Three 3rd grade cohorts (same 3rd grade teachers).  D and E index cohorts.  

Could add 4th (measure level) to account for three measurement per 
students.

97

Level 1 (student level)
Yijk = β0jk + βDjkDijk + βEjkEijk + εijk ε ~ N(0, σW

2)

Level 2 (teacher level)
β0jk = γ00k + η0jk

η ~ N(0, ΣI)
βDjk = γD0k + ηDjk

βEjk = γE0k + ηEjk

Level 3 (school level)
γ00k = π000 + π001Tk + ξ00k

ξ ~ N(0, ΣS)
γD0k = πD00 + πD01Tk + ξD0k

γE0k = πE00 + πE01Tk + ξE0k



Scenario #1: But…

• Suppose:
1. Not all teachers in every school consent to be 

in study.
2. In years 2 and 3 of study principals in T 

schools decide to put their struggling 
students in the classrooms of participating 
teachers.
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Scenario #2

• Follow students into Y2 and Y3.
• But, since not all teachers consented, some 

students get teachers exposed to PD in G3, 
some in G3+G4, some in G3+G5, some in 
G3+G4+G5.

• What to do?
• How to interpret parameters? 
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If time

Power in longitudinal studies



Power Analysis
Power computations for longitudinal experiments are 

doable, but depend on parameters that may not be well 
known

For example reliability of trend coefficients.
• When instruments are psychometrically tested, almost 

always psychometrics are computed at a single time 
point.

• Vertical scaling is not, by itself, enough.
– Just b/c we have vertical scale doesn’t always  mean we have 

estimate of reliability of (e.g.) linear rate of change estimates.
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Power Analysis
When parameters such as these are known, the 

computations are straightforward, but there is relatively 
little information about them that can be used for 
planning

To make matters worse, the values of some parameters 
(such as reliability) depend on the number of measures.
– So, just because you can do the power analysis for the case of 

three time points, doesn’t mean you can (easily) do the analysis 
for the case of 4.
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Power Analysis
Still some generalizations are possible

• Power increases with the number of measures

• Power increases with the length of time over which measures 
are made (except for power for β0jk)

• Power increases with the precision of each individual measure

These factors impact different trend coefficients differently

Clustering increases the complexity of computations
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Power increases with the length of time

104



Power increases with the length of time
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Impacts different coefficients differently

What is wrong 
here?

106

No robustness to 
incorrect model 
specification/ 
should quadratic 
term be 0?

??



Impacts different coefficients differently

Can’t get good 
curvature estimate 
on previous slides
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Power Analysis
Pilot data (or data from related studies, perhaps non-

experimental ones) is more important in planning 
longitudinal experiments than cross-sectional ones.

Because it is so important to get functional form right 
when computing power.

AND

Because it is hard to get good information about 
expected variation in things like slope coefficients.
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Power

• Optimal Design can compute for person and 
cluster randomized trials (not directly for 
blocked trials).

Relevant parameters:
• D=Duration
• f=frequency of observation
• Variation of level 1 coefficient:
• Variation of level 1 residual:
• Effect size 109

These are 
parameters that 
can be very hard to 
determine. 



Power example(s)

• Li and Konstantopoulos (2019) extend existing 
work to the case of block randomized trials.
– Specifically, they consider a three level design (e.g., 

measurements, students, schools) where students 
within schools are assigned to conditions.

– They assume equally spaced time points and one 
measurement per unit time.

• i.e. don’t distinguish between frequency and duration, 
unlike OD/Raudenbush and Liu (2001).
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Power examples
Li and Konstantopoulos (2019)

• For any trend coefficient (e.g. linear, 
quadratic) power depends on:
– # measurement occasions
– # students per school
– # schools
– level 1 measurement error.
– Level 2 variation in trend coefficients.
– Level 3 variation in treatment impacts on trend 

coefficients.
– Effect size (avg. difference b/tw T and C for that 

coefficient) standardized in some fashion. 111



Power examples
Li and Konstantopoulos (2019)

• They standardize effect size by square root of 
sum of level two variance in trend coefficient 
plus level three treatment effect variance.
– Wouldn’t make sense to include measurement 

error in denominator.

• Using parameters from Project STAR, they find 
that with 4 measurement occasions, 40 
schools and 30 students per school:

1. Power for linear effect size of .40 is 0.67
2. Power for quadratic effect size of .40 is 0.59.112



More Extras if time

Missing data and binary outcomes



Missing data

• Some level of attrition is inevitable.
For estimating regression coefficients

• This is no problem.
• Modern software (like HLM) can easily 

estimate models with unbalanced, time-
unstructured data.
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Missing data
From standpoint of causal inference

• Potentially a big problem.

• We randomized to ensure equivalence (on 
average) between two groups on all factors 
besides treatment.

• Once there is attrition this guarantee is gone.
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Differential attrition

1. Less clear how to define differential attrition 
in longitudinal studies.
– Perhaps 10% dropped out in T and C groups but T 

subjects mainly dropped after Time 2 and C 
subjects mainly after Time 4.

2. Lack of differential attrition does not 
guarantee lack of bias.

– Just because the % that left study is the same 
does not mean those who left were “the same” 
or left for the same reasons.
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Example:  Hedeker and Gibbons 
(1997)

• Study of psychotherapy for depression.
– In the treatment group those who left study are those 

who had been getting better fastest.
– In the control group, those who left study are those 

who had been getting better slowest.
• Graph in a moment.

– Study could be salvaged, because they could 
document that the reasons for leaving depended on a 
measured variable.

– However, if something similar occurred on an 
unmeasured variable causal inference would be 
seriously compromised.
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From Hedeker & Gibbons (1997)
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Binary outcomes

• Strictly speaking, the models presented today 
are appropriate only for continuous outcomes.

• However, analogous modeling approaches for 
dichotomous (binary) outcomes are available.

• Generally go by name “Generalized Linear 
Mixed Models” (GLMM).
– The “logistic” and “probit” models are most 

common for binary data.
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Binary outcomes

• Relationship to hierarchical linear models is 
analogous to relationship of linear regression 
to logistic regression.

• Conceptually, models can be formed in the 
same fashion as linear models.
– That is, by adding “random” effects at higher levels 

to represent variation in logistic regression 
coefficients across higher level units.
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Binary outcomes

• However, it is far more difficult to interpret 
the meaning of the parameters.

• In linear models we can think of decomposing 
variance into level-1, level-2, level-3 variance, 
etc.
– This decomposition defines quantities like the ICC.

• An analogous definition of an ICC is not 
available in generalized linear models.
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Binary outcomes

?  Why not ?
• For binary variables the mean is related to the 

variance.
• Once you specify the mean structure of the 

model, you also specify the variance.
• So, the level 1 variance is fixed by assumption 

and cannot be estimated from the data.
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