
Treatment Effects: 
What works for Whom?

Spyros Konstantopoulos
spyros@msu.edu

Michigan State University

Prepared for the IES Summer Research 
Training Institute June 2022

1

mailto:spyros@msu.edu


Main Treatment Effects

• In Experiments Typically We Calculate an Average 
Treatment Effect

• We Are Interested in Estimating Treatment Effects for 
All Individuals in the Sample 

• We Compute the Average Difference Between 
Treatment and Control Groups in Outcomes of 
Interest (e.g., Achievement) for All Individuals (Main 
Effect)
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Main Treatment Effects
• In the Simplest Case We Can Conduct a t-test for 

Independent Samples to Examine the Significance of 
the Main Treatment Effect

• Alternatively (and Equivalently) We Can Run a Simple 
Regression or ANOVA (with a Dummy Variable for the 
Treatment). The t-test is the Same (Assuming the 
Variances in the Two Groups Are Equal)

• We Can Run ANCOVA or Multiple Regression to 
Include Covariates

• In Nested Designs we Use Multilevel Models (HLM)
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Does the Treatment Have the Same 
Effect On All Groups of Individuals?

• One Fundamental Objective of U.S. Education is to 
Close the Achievement Gap Among Important Student 
Groups

• School Interventions Have Frequently Dual Objectives:
– Increase Student Outcomes (e.g., Achievement) for All 

Students
– Reduce the Achievement Gap

• Note that Decreasing the Achievement Gap Suggests 
that the Treatment Effect May Not Be the Same for All 
Students

• Some Students May Benefit More from Treatments 
than Others
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Does the Treatment Have the Same 
Effect On ALL Groups of Individuals?

• Interventions May Help Reduce the Gender, 
Race/Ethnicity, SES, ELL, and Low- High-Achievement 
gap

• Interventions May Help Reduce Differences between 
Schools (e.g., Urban and Rural schools)

• This Could Be a Byproduct of the Intervention or 
Could be one of the Main Objectives of the Study

• For example, the Objective Is to Reduce/Close the 
Achievement Gap at the Individual or School Level
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Differential Effects
• Exposure to Treatment Differs for Various 

Groups of Individuals

• The Effectiveness of the Treatment Varies 
Across these Groups

• These Are Called Differential Effects of the 
Treatment for Certain Groups of Individuals

6



Differential Effects
• Examples: 
• Low Achievers May Benefit More from Small Classes
• Low Achievers May Benefit More from Effective 

Teachers 
• Low Achievers May Benefit More from Data Driven 

Assessments 
• Assessment Programs May Be More Beneficial To Rural 

Schools 
• These Differential Effects Are Introduced in Regression 

Models as Statistical Interactions 
• Alternatively, to Determine Treatment Effects at 

Different Levels of Continuous Outcomes (e.g., 
Achievement) One Can Use Quantile Regression 7



Interaction Effects

• Interaction Effects Are a Related Notion to 
Differential Effects

• The Idea Is that the Treatment Interacts with 
Individual Characteristics (e.g., Low SES). 

• Through the Interaction the Treatment Could 
Be Maximized for a Specific Group of 
Individuals (e.g., low SES students) or Clusters 
(e.g., Rural Schools) on a Specific Outcome 
(e.g., Achievement) 
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Interaction Effects

• Pioneering Work by Cronbach and Snow 
(1977) Discussed Aptitude-Treatment 
Interactions in Education 

• The Idea is that a Treatment (e.g., Highly 
Structured Instruction) May Benefit Some 
Students (e.g., Low Achievers) More than 
Others
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Moderator Effects
• Same Notion as Interaction or Differential Effects
• Variables that Interact with Treatments Are Called 

Moderators and Indicate the Degree to Which the 
Treatment Effect on an Outcome Depends on the 
Moderator (Baron & Kenny, 1986)

• Moderator Variables Can be Categorical (e.g., 
Gender, Race/Ethnicity), Ordinal (e.g., SES, Likert 
Scale), or Continuous (e.g., Ability-Prior 
Achievement, Teacher Experience)

• Analytically, Interaction or Moderator Effects Are 
Introduced in Linear Regression Models as 
Statistical Interactions 10



Moderator Effects
• The Moderator May Affect the Direction and the 

Magnitude of the Treatment Effect
• That Is, the Moderator Variable Will Change the  

Strength of the Association Between Treatment and 
Outcome

• The Moderator Can Amplify or Reverse the Treatment 
Effect 

• The Question of Interest Is How Universal Is the Effect? 
• The Moderator Is Selected In Accord with the 

Researcher’s Interests (e.g., Research On Gender, 
Race, SES, Achievement, School Differences, Wages, 
etc.)
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What is a Statistical Interaction?

• Suppose We Are Interested in Examining Whether 
Small Classes Increase Achievement for Low SES 
(e.g., Students Eligible for Free or Reduced-Price 
Lunch) More than Other Students

• We Can Construct Two Binary Variables for Small 
Class and for Low SES Status and Create a Statistical 
Interaction by Multiplying the Two Variables

• In this Example Low SES Status Is a Moderator 
Variable. The Idea is that the Effect of Small Class is 
Different for Low SES than for Higher SES Students 
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Modeling Statistical Interaction

• The Simplest Form of Interactions is Two-Way 
Interactions Between Two Variables (That’s 
What We Discuss Here). A Pair of Variables 
Creates One Interaction Term

• Three-Way Interactions Are Between Three 
Variables (More Complicated Model). Three 
Variables Create Three Two-Way Interaction 
Terms and One Three-Way Interaction  
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Modeling Statistical Interaction
• Interactions Can Be Constructed between

– Continuous with Binary Variable (e.g., School Composition 
and Private-Public School)

– Continuous with Continuous Variable (e.g., Teacher 
Effectiveness and Professional Development)

– Dummy with Dummy Variable (e.g., Small Class and Low-
High SES)

• Next, We Will Discuss Interactions with a “Treatment” 
(Binary Variable) 

• To Model Interactions, We Include in the Regression 
Equation All Main Effects (e.g., Small Class and Low 
SES) and the Two-Way Interaction (the Product of the 
Two Variables)
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Modeling Statistical Interaction in 
Regression

• Suppose Treatment (T) is Dummy Variable (e.g., Small 
Class = 1, Else = 0) and Moderator (M) is Dummy Variable 
(e.g., Low SES Student = 1, Else = 0)

• The Simplest Way to Model the Interaction Effect Is  

• Where y Is Outcome, ε Is Residual, and β’s Need to Be 
Estimated (β3 Is the Coefficient of Interest) 

0 1 2 3i i i i i iy T M T Mβ β β β ε= + + + +
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Hypothesis Testing

• The Null Hypothesis States that the Interaction 
Term is Zero 

• The Alternative Hypothesis States that the 
Interaction Term is Different than Zero

• In this Case the Most Important Coefficient Is the 
Interaction Effect

• When the t-test Is Significant the Treatment Effect 
Is Changed by the Moderator
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Class Size Example:
Data

• Project STAR is a Longitudinal Field Experiment

• Students and Teachers Were Randomly 
Assigned to Small and Regular Size Classes 
Within Grades /Schools
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OLS Analysis

Regression, Population Model:

Where INT Represents the Interaction Term. 
Suppose Y Represents Mathematics Scores   
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𝑦𝑦𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 + 𝛽𝛽2𝑆𝑆𝐿𝐿𝐿𝐿𝑆𝑆𝐿𝐿𝑆𝑆𝑖𝑖 + 𝛽𝛽3𝐼𝐼𝐼𝐼𝑇𝑇𝑖𝑖 + 𝜀𝜀𝑖𝑖



Results
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Interpreting Statistical Interactions

• Intercept/Constant: Average Math Achievement of High SES 
Students in Regular Classes

• Small Class Coefficient: Average Math Difference Between 
Small and Regular Classes for High SES Students

• Low SES Coefficient: Average SES (Low versus High) Math 
Achievement Gap in Regular Classes 

• Interaction Coefficient: The Low-High SES Gap in Mathematics 
Is Reduced in Small Classes by an Average of 0.038 Points 
(Compared to the Regular Size Classes Gap), (Not Statistically 
Significant)

• OR the Treatment Effect (the Small-Regular Size Gap) for Low 
SES Students Is Larger (than that for High SES Students) by an 
Average of 0.038 Points in Mathematics (Not Statistically 
Significant) 20



Centering Main Variables
• Some Researchers Center the Treatment and Moderator 

Variables at their Means and then Compute the Product 
Term

• Centering Helps with Collinearity and Affects Only 
Estimates of Main Effects and their Standard Errors (Not 
Interactions)

• Standard Errors of the Main Effects Become Smaller 
Typically and the Intercept Is Different as Well

• Centering Seems more Natural when Continuous 
Variables Are Involved 
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Centering Main Variables

• The Previous Model Becomes:

• When                then 

• which Indicates that the Slopes Are the Same as 
without Centering, but the Intercept Changes and 
Complicates the Interpretation 

3 0β =

𝑦𝑦 = (𝛽𝛽0 − 𝛽𝛽1𝑇𝑇 − 𝛽𝛽2𝑆𝑆) + 𝛽𝛽1𝑇𝑇 + 𝛽𝛽2𝑆𝑆 + ε

𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1(𝑇𝑇 − 𝑇𝑇) + 𝛽𝛽2(𝑆𝑆 −𝑆𝑆) + 𝛽𝛽3(𝑇𝑇 − 𝑇𝑇)(𝑆𝑆 −𝑆𝑆) + ε
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Centering Main Variables

• When               the Model Becomes:

• which Shows that the Interaction Term Does not 
Change but the Intercept and the Slopes Change and 
Complicate the Interpretation

𝑦𝑦 = 𝛽𝛽0 − 𝛽𝛽1𝑇𝑇 − 𝛽𝛽2𝑆𝑆 + 𝛽𝛽3𝑇𝑇𝑆𝑆 + 𝛽𝛽1 − 𝛽𝛽3𝑆𝑆 𝑇𝑇 +
(𝛽𝛽2 − 𝛽𝛽3𝑇𝑇)𝑆𝑆 + 𝛽𝛽3𝑇𝑇𝑆𝑆 + 𝜀𝜀

3 0β ≠
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Results: Centered Variables
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• Notice that the SEs of the Main Effects are now Smaller



Another Example of an Interaction
• Does Being Male Faculty Have a Greater Impact on 

Salary with more Years of Experience? 
• Stated differently:

– Do Male Faculty Earn Higher Salaries than their Female 
Peers over Time (“Treatment” Here Is Gender)?

– For Every Additional Year of Experience, Individuals Earn 
more, on Average (Experience Is the Moderator 
Variable)

– Do Male Faculty Get Higher Increases for each 
Additional Year of Experience Compared to their Female 
Peers?
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Allows the Male and Female Lines to 
Have Different Slopes

• Yrstch is Years of Experience

salary

yrstch

males

females

β0
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Add an Interaction Term to Capture 
the Added Effect

• This Model Assumes that the Effect of Years of 
Experience Is the Same for Men and Women 
(Experience is a Control Variable)

• The Model Below Relaxes this Assumption and 
Allows Experience to Interact with Gender

0 1 1salary yrstch femaleβ β δ ε= + + +

0 1 2 3 ( * )salary yrstch female yrstch femaleβ β β β ε= + + + +
27



Interaction: Null Hypothesis

• The Impact of Years of Experience on Faculty 
Salary is the Same for both Genders
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Effect of Specific Variables Harder to 
Interpret with Interactions

• In the Model

• the Effect of Experience for Males Is the 
Estimate of β̂1 and at Average Levels of 
Experience, the Estimated Effect of Being 
Female Is  

0 1 2 3 ( * )salary yrstch female yrstch femaleβ β β β ε= + + + +

2 3
ˆ ˆ * yrstchβ β+
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Another Example

• Do Gender Differences in Wages Depend on Years 
of Education?

• Gender Is the “Treatment” and Years of 
Education Is the Moderator Variable
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What Do These Graphs Indicate?
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Interactions in Multilevel 
Designs/Models
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Modeling Statistical Interaction: 
Two-Level CRD - 1

• Outcome is Math Scores
• Treatment and Moderator at Level 2
• Suppose Treatment (T) is a Dummy Variable (e.g., 

School Intervention = 1, Else = 0) and Moderator (M) is 
Dummy Variable (e.g., Rural School = 1, Urban = 0)

• The Simplest Way to Model the Interaction Effect Is  

0

0 00 01 02 03 0

1
2

ij j ij

j j j j j j

L y
L T M T M

β ε

β γ γ γ γ η

− = +

− = + + + +
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Modeling Statistical Interaction: 
Two-Level CRD – 1 Example 

• Treatment Represents Interim Assessments in Grades 
K-8 (School Level) 

• Moderator Represents Rural and Urban Schools (School 
Level)
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Interpreting Statistical Interactions
• Intercept/Constant: Average Math Achievement In Control 

Schools In Urban Schools
• Treatment Coefficient: Average Math Difference Between 

Treatment and Control Schools in Urban Schools
• Rural School Coefficient: Average Rural versus Urban 

Schools Math Achievement Gap in Control Schools 
• Interaction Coefficient: The Rural-Urban School Gap in 

Mathematics Is Larger in Treatment Schools by an Average 
of 0.175 Points (Compared to the Control Schools Gap) 
(Not Statistically Significant)

• OR the Treatment Effect in Rural Schools Is Larger (than 
that in Urban Schools) by an Average of 0.175 Points in 
Mathematics (Not Statistically Significant)
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Modeling Statistical Interaction: 
Two-Level CRD - 2

• Treatment at Level 2 and Moderator at Level 1 (Fixed at 
Level 2)

• This Is a Cross-Level Interaction
• Suppose Treatment (T) is a Dummy Variable (e.g., School 

Intervention = 1, Control = 0) and Moderator (M) is a 
Dummy Variable (e.g., Female = 1, Male = 0)

• The Simplest Way to Model the Interaction Effect Is  

0 1

0 00 01 0

1 10 11

1
2
2

ij j j ij ij

j j j

j j

L y M
L T
L T

β β ε

β γ γ η

β γ γ

− = + +

− = + +

− = + 36



Modeling Statistical Interaction: 
Two-Level CRD - 2

• The Mixed Effects Model is: 

• Where       Represents the Cross-Level Two-Way 
Interaction 

00 01 10 11 0ij j ij j ij j ijy T M T Mγ γ γ γ η ε= + + + + +
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Modeling Statistical Interaction: 
Two-Level CRD – 2 Example 

• Treatment Represents Interim Assessments in Grades K-8 
(School Level) 

• Moderator Represents Female and Male Students 
(Student Level)
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Interpreting Statistical Interactions
• Intercept/Constant: Average Math Achievement In 

Control Schools for Male Students
• Treatment Coefficient: Average Math Difference 

Between Treatment and Control Schools for Male 
Students

• Female Coefficient: Average Female-Male Math 
Achievement Gap in Control Schools 

• Interaction Coefficient: The Female-Male Gap in 
Mathematics Is Larger in Treatment Schools by an 
Average of 0.005 Points (Compared to the Control 
Schools Gap) (Not Statistically Significant)

• OR the Treatment Effect for Female Students Is Larger 
(than that for male Students) by an Average of 0.005 
Points in Mathematics (Not Statistically Significant) 39



Modeling Statistical Interaction: 
Three-Level CRD - 1

• Students Nested Within Classes Within Schools
• Treatment and Moderator at Level 3
• Suppose Treatment (T) is Dummy Variable (e.g., School 

Intervention = 1, Else = 0) and Moderator (M) is Dummy 
Variable (e.g., Private School = 1, Else = 0)

• The Simplest Way to Model the Interaction Effect Is  

0

0 00 0

00 000 001 002 003 00

1
2
3

ijk jk ijk

jk k jk

k k k k k k

L y
L
L T M T M

β ε

β γ η

γ δ δ δ δ ξ

− = +

− = +

− = + + + +
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Modeling Statistical Interaction: 
Three-Level CRD - 2

• Treatment at Level 3 and Moderator at Level 2 (Fixed at Level 3)
• This Is a Cross-Level Interaction
• Suppose Treatment (T) is Dummy Variable (e.g., School 

Intervention = 1, Else = 0) and Moderator (M) is Dummy Variable 
(e.g., Teacher Certified = 1, Else = 0)

• The Simplest Way to Model the Interaction Effect Is  

0

0 00 01 0

00 000 001 00

01 010 011

1
2
3
3

ijk jk ijk

jk k k jk jk

k k k

k k

L y
L M
L T
L T

β ε

β γ γ η

γ δ δ ξ
γ δ δ

− = +

− = + +

− = + +
− = + 41



Modeling Statistical Interaction: 
Three-Level CRD - 2

• The Mixed Effects Model is: 

• Where δ011 Represents the Cross-Level Two-Way 
Interaction 

000 001 010 011 00 0ijk k jk k jk k jk ijky T M T Mδ δ δ δ ξ η ε= + + + + + +
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Modeling Statistical Interaction: 
Three-Level CRD - 3

• Treatment at Level 3 and Moderator at Level 1 (Fixed at Levels 2 and 
3)

• This Is Also a Cross-Level Interaction
• Suppose Treatment (T) is Dummy Variable (e.g., School Intervention 

= 1, Else = 0) and Moderator (M) is Dummy Variable (e.g., Low SES = 
1, Else = 0)

• The Simplest Way to Model the Interaction Effect Is  

0 1

0 00 0

1 10

00 000 001 00

10 100 101

1
2
2
3
3

ijk jk jk ijk ijk

jk k jk

jk k

k k k

k k

L y M
L
L
L T
L T

β β ε

β γ η

β γ

γ δ δ ξ
γ δ δ

− = + +

− = +

− =

− = + +
− = + 43



Modeling Statistical Interaction: 
Three-Level CRD - 3

• The Mixed Effects Model is: 

• Where δ101 Represents the Cross-Level Two-Way 
Interaction 

• The Model Can Become More Complicated and 
Include Moderators At All Levels

000 001 100 101 00 0ijk k ijk k ijk k jk ijky T M T Mδ δ δ δ ξ η ε= + + + + + +
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Modeling Statistical Interaction: 
Two-Level BRD

• In BRD Interactions Can Be Modeled as Fixed (e.g., Two-Way 
Interactions) or Random (e.g., Treatment by Class or School 
Interaction). Students Nested Within Schools

• Treatment and Moderator at Level 1 (Both Fixed at Level 2)
• Suppose Treatment (T) is Dummy Variable (e.g., Small Class = 1, 

Else = 0) and Moderator (M) is Dummy Variable (e.g., Female = 
1, Else = 0)

0 1 2 3

0 00 0

1 10

2 20

3 30

1
2
2
2
2

ij j j ij j ij j ij ij ij

j j

j

j

j

L y T M T M
L
L
L
L

β β β β ε
β γ η
β γ
β γ
β γ

− = + + + +

− = +

− =

− =

− = 45



Example

Two-Level Model: 

0j 1j 2j 3j ij

0j 00 0

1j 10

2j 20

3j 30

β +β SMCLASS +β LowSES +β Interaction + ε
β
β
β
β

ij ij ij ij

j

Y
γ η

γ

γ

γ

=

= +

=

=

=
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Results
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Modeling Statistical Interaction: 
Two-Level BRD - 1

• In BRD Interactions Can Be Modeled as Fixed (e.g., Two-Way 
Interactions) or Random (e.g., Treatment by Class or School 
Interaction). Students Nested Within Schools

• Treatment and Moderator at Level 1: Treatment is a Random 
Effect at Level 2

• Suppose Treatment (T) is Dummy Variable (e.g., Small Class = 1, 
Else = 0) and Moderator (M) is Dummy Variable (e.g., Female = 
1, Else = 0)

0 1 2 3

0 00 0

1 10 1

2 20

3 30

1
2
2
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ij j j ij j ij j ij ij ij

j j

j j

j

j

L y T M T M
L
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L
L

β β β β ε
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β γ η
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Modeling Statistical Interaction: 
Two-Level BRD - 1

• The Mixed Effects Model is: 

• Where        Represents the Two-Way Interaction and 
Represents a Treatment by Level-2 (School) Interaction 
(Random Effect) 

00 10 20 30

0 1

ij ij ij ij ij

j ij j ij

y T M T M
T

γ γ γ γ

η η ε

= + + + +

+ +
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Example

Two-Level Model: 

0j 1j 2j 3j ij

0j 00 0

1j 10 1

2j 20

3j 30

β +β SMCLASS +β LowSES +β Interaction + ε
β
β
β
β

ij ij ij ij

j

j

Y
γ η

γ η

γ

γ

=

= +

= +

=

=
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Results
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Modeling Statistical Interaction: 
Two-Level BRD - 2

• Treatment at Level 1 (Random at Level 2) and Moderator 
at Level 2

• This Is a Cross-Level Interaction
• Suppose Treatment (T) is Dummy Variable (e.g., Small 

Class = 1, Else = 0) and Moderator (M) is Dummy Variable 
(e.g., Schools with High Proportions of Low SES Students = 
1, Else = 0)

• The Simplest Way to Model the Interaction Effect Is  

0 1

0 00 01 0

1 10 11 1

1
2
2

ij j j ij ij

j j j

j j j

L y T
L M
L M

β β ε
β γ γ η
β γ γ η

− = + +

− = + +

− = + + 52



Modeling Statistical Interaction: 
Two-Level BRD - 2

• The Mixed Effects Model is: 

• where      Represents the Cross-Level Two-Way 
Interaction and          Represents a Treatment by Level-2 
(School) Interaction (Random Effect) 

00 10 01 11

0 1

ij ij j ij j

j ij j ij

y T M T M
T

γ γ γ γ

η η ε

= + + + +

+ +
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Example

Two-Level Model:

The Moderator Represents High Proportions of Low SES 
Students in Schools (> 50 Percent)

0j 1j ij

0j 00 01 0

1j 10 11 1

β +β SMCLASS + ε
β
β

ij ij

j

j

Y
HLOWSESCHL
HLOWSESCHL

γ γ η

γ γ η

=

= + +

= + +
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Results
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Modeling Statistical Interaction: 
Three-Level BRD - 1

• Students Nested Within Classes Within Schools
• Treatment and Moderator Are at Level 1 
• Treatment is Random at Levels 2 and 3 and Moderator is Fixed at Levels 

2 and 3 
• Suppose Treatment (T) is Dummy Variable (e.g., Within Class Grouping) 

and Moderator (M) is Dummy Variable (e.g., Low SES = 1, Else = 0)
• The Mixed Effects Model Is

• where δ300 Represents the Two-Way Interaction and Tijkξ10k, Tijkη1jk
Represent the Treatment by Level-3 (School) and by Level-2 (Class) 
Interactions (Random Effects) 

000 100 200 300

00 10 0 1

ijk ijk ijk ijk ijk

k ijk k jk ijk jk ijk

y T M T M
T T

δ δ δ δ

ξ ξ η η ε

= + + + +

+ + + +
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Modeling Statistical Interaction: 
Three-Level BRD - 1
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Modeling Statistical Interaction: 
Three-Level BRD - 2

• Treatment at Level 2 (Random at Level 3) and Moderator at 
Level 1 (Fixed)

• Suppose Treatment (T) is Class Variable (e.g., Small Class = 1, 
Else = 0) and Moderator (M) is a Student Variable (e.g., 
Gender)

• The Mixed Effects Model is: 

• where δ110 Represents the Two-Way Cross-Level Interaction 
and Tjkξ01k Represents the Treatment by Level-3 (School) 
Interaction (Random Effect) 
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00 01 0
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Modeling Statistical Interaction: 
Three-Level BRD - 2
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Modeling Statistical Interaction: 
Three-Level BRD - 3

• Treatment at Level 2 (Random at Level 3) and Moderator at Level 2 
(Fixed)

• Suppose Treatment (T) is Dummy Variable (e.g., Small Class = 1, Else 
= 0) and Moderator (M) is a Teacher Variable (e.g., hours of PD)

• The Mixed Effects Model is: 

• where δ030 Represents the Two-Way Interaction and Tjkξ01k
Represents the Treatment by Level-3 (School) Interaction (Random 
Effect) 
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Modeling Statistical Interaction: 
Three-Level BRD - 3
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Modeling Statistical Interaction: 
Three-Level BRD - 4

• Treatment at Level 2 (Random at Level 3) and Moderator at Level 
3

• Suppose Treatment (T) is Dummy Variable (e.g., Small Class = 1, 
Else = 0) and Moderator (M) is a School Variable (e.g., School with 
High Proportions of Low SES Students = 1 Else = 0)

• The Mixed Effects Model is: 

• Where δ011 Represents the Two-Way Cross-Level Interaction and 
Tjkξ01k Represents the Treatment by Level-3 (School) Interaction 
(Random Effect) 
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Modeling Statistical Interaction: 
Three-Level BRD - 4

0

0 00 01 0

00 000 001 00

01 010 011 01

1
2
3
3

ijk jk ijk

jk k k jk jk

k k k

k k k

L y
L T
L M
L M

β ε

β γ γ η

γ δ δ ξ
γ δ δ ξ

− = +

− = + +

− = + +
− = + +

63



Power and Interaction Effects (IE)
• Tests of Interaction Effects are Typically Underpowered 

(Compared to Tests for Main Effects) 

• Empirical Evidence in Medicine Suggests that the IE Needs to 
Be at Least Twice as Large as the Main Treatment Effect to 
Achieve Similar Power

• If Magnitude Is the Same as the Main Treatment Effect 
Power is Typically Smaller. Larger Sample Sizes Are Typically 
Needed to Detect IE 

• Power in HLM (Moderators) Visit the Link 
https://www.causalevaluation.org/
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Power and Interaction Effects (IE): 
Two-Level CRD

• The Sample Size at Top Level Influences Power More 
than the Sample Size at the First Level 

• For Level-1 Moderators that Are Fixed at Level 2 the 
Sample Size at Level 1 Matters as Well

• Power is Smaller for Level-2 Moderators 

• Power is Higher for Lower-Level Fixed Moderators

• Level-1 and Level-2 Covariates Improve Power 65



Power and Interaction Effects (IE): 
Two-Level BRD

• The Sample Size at Top Level Influences Power More 
than the Sample Size at the First Level  (Especially for 
Random Treatment Effects)

• Level-1 and Level-2 Covariates Improve Power

• Level-1 Moderators can be Treated as Random or Fixed 
at the Second Level. Power is Higher for Fixed 
Moderators  

• When Level-1 Moderators Are Fixed the Sample Size at 
Level 1 Matters as Well 66



Power and Interaction Effects (IE): 
Three-Level CRD

• The Sample Size at Top Level Influences Power More 
than the Sample Sizes at Lower Levels 

• When Lower-Level Moderators Are Fixed Lower-Level 
Sample Sizes Matter as Well

• Power is Smaller for Level-3 Moderators. Power is Larger 
for Level-1 Moderators

• Covariates Improve Power 

• Power is Higher for Lower-Level Fixed Moderators 67
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