Treatment Effects: What works for Whom?

Spyros Konstantopoulos <u>spyros@msu.edu</u> Michigan State University

Prepared for the IES Summer Research Training Institute June 2022

Main Treatment Effects

- In Experiments Typically We Calculate an Average Treatment Effect
- We Are Interested in Estimating Treatment Effects for *All* Individuals in the Sample
- We Compute the Average Difference Between Treatment and Control Groups in Outcomes of Interest (e.g., Achievement) for All Individuals (Main Effect)

Main Treatment Effects

- In the Simplest Case We Can Conduct a t-test for Independent Samples to Examine the Significance of the Main Treatment Effect
- Alternatively (and Equivalently) We Can Run a Simple Regression or ANOVA (with a Dummy Variable for the Treatment). The t-test is the Same (Assuming the Variances in the Two Groups Are Equal)
- We Can Run ANCOVA or Multiple Regression to Include Covariates
- In Nested Designs we Use Multilevel Models (HLM)

Does the Treatment Have the Same Effect On All Groups of Individuals?

- One Fundamental Objective of U.S. Education is to Close the Achievement Gap Among Important Student Groups
- School Interventions Have Frequently Dual Objectives:
 - Increase Student Outcomes (e.g., Achievement) for All Students
 - Reduce the Achievement Gap
- Note that Decreasing the Achievement Gap Suggests that the Treatment Effect May Not Be the Same for All Students
- Some Students May Benefit More from Treatments than Others

Does the Treatment Have the Same Effect On ALL Groups of Individuals?

- Interventions May Help Reduce the Gender, Race/Ethnicity, SES, ELL, and Low- High-Achievement gap
- Interventions May Help Reduce Differences between Schools (e.g., Urban and Rural schools)
- This Could Be a Byproduct of the Intervention or Could be one of the Main Objectives of the Study
- For example, the Objective Is to Reduce/Close the Achievement Gap at the Individual or School Level

Differential Effects

- Exposure to Treatment Differs for Various Groups of Individuals
- The Effectiveness of the Treatment Varies Across these Groups
- These Are Called Differential Effects of the Treatment for Certain Groups of Individuals

Differential Effects

- Examples:
- Low Achievers May Benefit More from Small Classes
- Low Achievers May Benefit More from Effective Teachers
- Low Achievers May Benefit More from Data Driven Assessments
- Assessment Programs May Be More Beneficial To Rural Schools
- These Differential Effects Are Introduced in Regression Models as Statistical Interactions
- Alternatively, to Determine Treatment Effects at Different Levels of Continuous Outcomes (e.g., Achievement) One Can Use Quantile Regression

Interaction Effects

- Interaction Effects Are a Related Notion to Differential Effects
- The Idea Is that the Treatment Interacts with Individual Characteristics (e.g., Low SES).
- Through the Interaction the Treatment Could Be Maximized for a Specific Group of Individuals (e.g., low SES students) or Clusters (e.g., Rural Schools) on a Specific Outcome (e.g., Achievement)

Interaction Effects

- Pioneering Work by Cronbach and Snow (1977) Discussed Aptitude-Treatment Interactions in Education
- The Idea is that a Treatment (e.g., Highly Structured Instruction) May Benefit Some Students (e.g., Low Achievers) More than Others

Moderator Effects

- Same Notion as Interaction or Differential Effects
- Variables that Interact with Treatments Are Called Moderators and Indicate the Degree to Which the Treatment Effect on an Outcome Depends on the Moderator (Baron & Kenny, 1986)
- Moderator Variables Can be Categorical (e.g., Gender, Race/Ethnicity), Ordinal (e.g., SES, Likert Scale), or Continuous (e.g., Ability-Prior Achievement, Teacher Experience)
- Analytically, Interaction or Moderator Effects Are Introduced in Linear Regression Models as Statistical Interactions

Moderator Effects

- The Moderator May Affect the Direction and the Magnitude of the Treatment Effect
- That Is, the Moderator Variable Will Change the Strength of the Association Between Treatment and Outcome
- The Moderator Can Amplify or Reverse the Treatment Effect
- The Question of Interest Is How Universal Is the Effect?
- The Moderator Is Selected In Accord with the Researcher's Interests (e.g., Research On Gender, Race, SES, Achievement, School Differences, Wages, etc.)

What is a Statistical Interaction?

- Suppose We Are Interested in Examining Whether Small Classes Increase Achievement for Low SES (e.g., Students Eligible for Free or Reduced-Price Lunch) More than Other Students
- We Can Construct Two Binary Variables for Small Class and for Low SES Status and Create a Statistical Interaction by Multiplying the Two Variables
- In this Example Low SES Status Is a Moderator Variable. The Idea is that the Effect of Small Class is Different for Low SES than for Higher SES Students

Modeling Statistical Interaction

 The Simplest Form of Interactions is Two-Way Interactions Between Two Variables (That's What We Discuss Here). A Pair of Variables Creates One Interaction Term

 Three-Way Interactions Are Between Three Variables (More Complicated Model). Three Variables Create Three Two-Way Interaction Terms and One Three-Way Interaction

Modeling Statistical Interaction

- Interactions Can Be Constructed between
 - Continuous with Binary Variable (e.g., School Composition and Private-Public School)
 - Continuous with Continuous Variable (e.g., Teacher Effectiveness and Professional Development)
 - Dummy with Dummy Variable (e.g., Small Class and Low-High SES)
- Next, We Will Discuss Interactions with a "Treatment" (Binary Variable)
- To Model Interactions, We Include in the Regression Equation All Main Effects (e.g., Small Class and Low SES) and the Two-Way Interaction (the Product of the Two Variables)

Modeling Statistical Interaction in Regression

- Suppose Treatment (T) is Dummy Variable (e.g., Small Class = 1, Else = 0) and Moderator (M) is Dummy Variable (e.g., Low SES Student = 1, Else = 0)
- The Simplest Way to Model the Interaction Effect Is

$$y_i = \beta_0 + \beta_1 T_i + \beta_2 M_i + \beta_3 T_i M_i + \varepsilon_i$$

• Where y Is Outcome, ϵ Is Residual, and β 's Need to Be Estimated (β_3 Is the Coefficient of Interest)

Hypothesis Testing

- The Null Hypothesis States that the Interaction Term is Zero
- The Alternative Hypothesis States that the Interaction Term is Different than Zero
- In this Case the Most Important Coefficient Is the Interaction Effect
- When the t-test Is Significant the Treatment Effect Is Changed by the Moderator

Class Size Example: Data

• Project STAR is a Longitudinal Field Experiment

 Students and Teachers Were Randomly Assigned to Small and Regular Size Classes Within Grades /Schools

OLS Analysis

Regression, Population Model:

 $y_i = \beta_0 + \beta_1 SMCLASS_i + \beta_2 LowSES_i + \beta_3 INT_i + \varepsilon_i$

Where *INT* Represents the Interaction Term. Suppose *Y* Represents Mathematics Scores

Results

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients			95.0% Confiden	ce Interval for B
Model B Std. Error		Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound	
1	(Constant)	.260	.022		11.948	.000	.217	.303
	SMALL CLASS	.141	.038	.066	3.763	.000	.068	.215
	LOW SES	630	.031	317	-20.365	.000	691	570
	LOW SES SMALL CLASS INTERACTION	.038	.055	.014	.695	.487	069	.145

a. Dependent Variable: MATHEMATICS

Interpreting Statistical Interactions

- Intercept/Constant: Average Math Achievement of High SES Students in Regular Classes
- Small Class Coefficient: Average Math Difference Between Small and Regular Classes for High SES Students
- Low SES Coefficient: Average SES (Low versus High) Math Achievement Gap in Regular Classes
- Interaction Coefficient: The Low-High SES Gap in Mathematics Is Reduced in Small Classes by an Average of 0.038 Points (Compared to the Regular Size Classes Gap), (Not Statistically Significant)
- OR the Treatment Effect (the Small-Regular Size Gap) for Low SES Students Is Larger (than that for High SES Students) by an Average of 0.038 Points in Mathematics (Not Statistically Significant)

Centering Main Variables

- Some Researchers Center the Treatment and Moderator Variables at their Means and then Compute the Product Term
- Centering Helps with Collinearity and Affects Only Estimates of Main Effects and their Standard Errors (Not Interactions)
- Standard Errors of the Main Effects Become Smaller Typically and the Intercept Is Different as Well
- Centering Seems more Natural when Continuous Variables Are Involved

Centering Main Variables

• The Previous Model Becomes:

$$y = \beta_0 + \beta_1 (T - \overline{T}) + \beta_2 (M - \overline{M}) + \beta_3 (T - \overline{T}) (M - \overline{M}) + \varepsilon$$

• When
$$\beta_3 = 0$$
 then

$$y = (\beta_0 - \beta_1 \overline{T} - \beta_2 \overline{M}) + \beta_1 T + \beta_2 M + \varepsilon$$

 which Indicates that the Slopes Are the Same as without Centering, but the Intercept Changes and Complicates the Interpretation

Centering Main Variables

• When $\beta_3 \neq 0$ the Model Becomes:

$$y = (\beta_0 - \beta_1 \overline{T} - \beta_2 \overline{M} + \beta_3 \overline{TM}) + (\beta_1 - \beta_3 \overline{M})T + (\beta_2 - \beta_3 \overline{T})M + \beta_3 TM + \varepsilon$$

 which Shows that the Interaction Term Does not Change but the Intercept and the Slopes Change and Complicate the Interpretation

Results: Centered Variables

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients			95.0% Confiden	ice Interval for B
Model		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound
1	(Constant)	.008	.013		.656	.512	017	.033
	SMALL CLASS CENTERED AT MEAN	.159	.027	.075	5.850	.000	.106	.213
	LOW SES CENTERED AT MEAN	618	.025	311	-24.247	.000	668	568
	LOW SES SMALL CLASS INTERACTION WITH CENTERED VARIABLES	.038	.055	.009	.695	.487	069	.145

a. Dependent Variable: MATHEMATICS

• Notice that the SEs of the Main Effects are now Smaller

Another Example of an Interaction

- Does Being Male Faculty Have a Greater Impact on Salary with more Years of Experience?
- Stated differently:
 - Do Male Faculty Earn Higher Salaries than their Female Peers over Time ("Treatment" Here Is Gender)?
 - For Every Additional Year of Experience, Individuals Earn more, on Average (Experience Is the Moderator Variable)
 - Do Male Faculty Get Higher Increases for each Additional Year of Experience Compared to their Female Peers?

Allows the Male and Female Lines to Have Different Slopes

• Yrstch is Years of Experience

Add an Interaction Term to Capture the Added Effect

 This Model Assumes that the Effect of Years of Experience Is the Same for Men and Women (Experience is a Control Variable)

$$salary = \beta_0 + \beta_1 yrstch + \delta_1 female + \varepsilon$$

• The Model Below Relaxes this Assumption and Allows Experience to Interact with Gender

 $salary = \beta_0 + \beta_1 yrstch + \beta_2 female + \beta_3 (yrstch * female) + \varepsilon$

Interaction: Null Hypothesis

• The Impact of Years of Experience on Faculty Salary is the Same for both Genders

Effect of Specific Variables Harder to Interpret with Interactions

• In the Model

 $salary = \beta_0 + \beta_1 yrstch + \beta_2 female + \beta_3 (yrstch * female) + \varepsilon$

 the Effect of Experience for Males Is the Estimate of β₁ and at Average Levels of Experience, the Estimated Effect of Being Female Is

$$\hat{\beta}_2 + \hat{\beta}_3 * \overline{yrstch}$$

Another Example

• Do Gender Differences in Wages Depend on Years of Education?

• Gender Is the "Treatment" and Years of Education Is the Moderator Variable

What Do These Graphs Indicate?

Interactions in Multilevel Designs/Models

- Outcome is Math Scores
- Treatment and Moderator at Level 2
- Suppose Treatment (T) is a Dummy Variable (e.g., School Intervention = 1, Else = 0) and Moderator (M) is Dummy Variable (e.g., Rural School = 1, Urban = 0)
- The Simplest Way to Model the Interaction Effect Is

$$L - 1 \qquad y_{ij} = \beta_{0j} + \varepsilon_{ij}$$

$$L - 2 \qquad \beta_{0j} = \gamma_{00} + \gamma_{01}T_j + \gamma_{02}M_j + \gamma_{03}T_jM_j + \eta_{0j}$$

Modeling Statistical Interaction: Two-Level CRD – 1 Example

- Treatment Represents Interim Assessments in Grades K-8 (School Level)
- Moderator Represents Rural and Urban Schools (School Level)

						95% Confidence Interval	
Parameter	Estimate	Std. Error	df	t	Sig.	Lower Bound	Upper Bound
Intercept	238060	.149575	33.732	-1.592	.121	542123	.066003
treatment	050011	.200831	33.835	249	.805	458223	.358200
rural	.260266	.173433	34.263	1.501	.143	092093	.612625
treatrural	.175248	.229866	34.226	.762	.451	291782	.642278

Estimates of Fixed Effects^a

a. Dependent Variable: Standardized values of (math)

Interpreting Statistical Interactions

- Intercept/Constant: Average Math Achievement In Control Schools In Urban Schools
- Treatment Coefficient: Average Math Difference Between Treatment and Control Schools in Urban Schools
- Rural School Coefficient: Average Rural versus Urban Schools Math Achievement Gap in Control Schools
- Interaction Coefficient: The Rural-Urban School Gap in Mathematics Is Larger in Treatment Schools by an Average of 0.175 Points (Compared to the Control Schools Gap) (Not Statistically Significant)
- OR the Treatment Effect in Rural Schools Is Larger (than that in Urban Schools) by an Average of 0.175 Points in Mathematics (Not Statistically Significant)

- Treatment at Level 2 and Moderator at Level 1 (Fixed at Level 2)
- This Is a Cross-Level Interaction
- Suppose Treatment (T) is a Dummy Variable (e.g., School Intervention = 1, Control = 0) and Moderator (M) is a Dummy Variable (e.g., Female = 1, Male = 0)
- The Simplest Way to Model the Interaction Effect Is

$$L-1 \qquad y_{ij} = \beta_{0j} + \beta_{1j}M_{ij} + \varepsilon_{ij}$$
$$L-2 \qquad \beta_{0j} = \gamma_{00} + \gamma_{01}T_j + \eta_{0j}$$
$$L-2 \qquad \beta_{1j} = \gamma_{10} + \gamma_{11}T_j$$

• The Mixed Effects Model is:

$$y_{ij} = \gamma_{00} + \gamma_{01}T_j + \gamma_{10}M_{ij} + \gamma_{11}T_jM_{ij} + \eta_{0j} + \mathcal{E}_{ij}$$

• Where γ_{11} Represents the Cross-Level Two-Way Interaction

Modeling Statistical Interaction: Two-Level CRD – 2 Example

- Treatment Represents Interim Assessments in Grades K-8 (School Level)
- Moderator Represents Female and Male Students (Student Level)

Estimates	of	Fixed	Effects ^a
-----------	----	-------	----------------------

						95% Confidence Interval	
Parameter	Estimate	Std. Error	df	t	Sig.	Lower Bound	Upper Bound
Intercept	022597	.065169	56.674	347	.730	153112	.107918
treatment	.070702	.083267	56.991	.849	.399	096037	.237441
female	.003545	.019893	20869.970	.178	.859	035447	.042537
treatfemale	.004697	.026568	20868.169	.177	.860	047378	.056773

a. Dependent Variable: Standardized values of (math)

Interpreting Statistical Interactions

- Intercept/Constant: Average Math Achievement In Control Schools for Male Students
- Treatment Coefficient: Average Math Difference Between Treatment and Control Schools for Male Students
- Female Coefficient: Average Female-Male Math Achievement Gap in Control Schools
- Interaction Coefficient: The Female-Male Gap in Mathematics Is Larger in Treatment Schools by an Average of 0.005 Points (Compared to the Control Schools Gap) (Not Statistically Significant)
- OR the Treatment Effect for Female Students Is Larger (than that for male Students) by an Average of 0.005 Points in Mathematics (Not Statistically Significant)

- Students Nested Within Classes Within Schools
- Treatment and Moderator at Level 3
- Suppose Treatment (T) is Dummy Variable (e.g., School Intervention = 1, Else = 0) and Moderator (M) is Dummy Variable (e.g., Private School = 1, Else = 0)
- The Simplest Way to Model the Interaction Effect Is

$$\begin{split} L - 1 & y_{ijk} = \beta_{0jk} + \mathcal{E}_{ijk} \\ L - 2 & \beta_{0jk} = \gamma_{00k} + \eta_{0jk} \\ L - 3 & \gamma_{00k} = \delta_{000} + \delta_{001} T_k + \delta_{002} M_k + \delta_{003} T_k M_k + \xi_{00k} \end{split}$$

- Treatment at Level 3 and Moderator at Level 2 (Fixed at Level 3)
- This Is a Cross-Level Interaction
- Suppose Treatment (T) is Dummy Variable (e.g., School Intervention = 1, Else = 0) and Moderator (M) is Dummy Variable (e.g., Teacher Certified = 1, Else = 0)
- The Simplest Way to Model the Interaction Effect Is

$$\begin{split} L - 1 & y_{ijk} = \beta_{0jk} + \varepsilon_{ijk} \\ L - 2 & \beta_{0jk} = \gamma_{00k} + \gamma_{01k} M_{jk} + \eta_{0jk} \\ L - 3 & \gamma_{00k} = \delta_{000} + \delta_{001} T_k + \xi_{00k} \\ L - 3 & \gamma_{01k} = \delta_{010} + \delta_{011} T_k \end{split}$$

• The Mixed Effects Model is:

$$y_{ijk} = \delta_{000} + \delta_{001}T_k + \delta_{010}M_{jk} + \delta_{011}T_kM_{jk} + \xi_{00k} + \eta_{0jk} + \varepsilon_{ijk}$$

- Where δ_{011} Represents the Cross-Level Two-Way Interaction

- Treatment at Level 3 and Moderator at Level 1 (Fixed at Levels 2 and 3)
- This Is Also a Cross-Level Interaction
- Suppose Treatment (T) is Dummy Variable (e.g., School Intervention = 1, Else = 0) and Moderator (M) is Dummy Variable (e.g., Low SES = 1, Else = 0)
- The Simplest Way to Model the Interaction Effect Is

$$\begin{split} L - 1 & y_{ijk} = \beta_{0\,jk} + \beta_{1\,jk} M_{ijk} + \varepsilon_{ijk} \\ L - 2 & \beta_{0\,jk} = \gamma_{00k} + \eta_{0\,jk} \\ L - 2 & \beta_{1\,jk} = \gamma_{10k} \\ L - 3 & \gamma_{00k} = \delta_{000} + \delta_{001} T_k + \xi_{00k} \\ L - 3 & \gamma_{10k} = \delta_{100} + \delta_{101} T_k \end{split}$$

• The Mixed Effects Model is:

$$y_{ijk} = \delta_{000} + \delta_{001}T_k + \delta_{100}M_{ijk} + \delta_{101}T_kM_{ijk} + \xi_{00k} + \eta_{0jk} + \varepsilon_{ijk}$$

- Where δ_{101} Represents the Cross-Level Two-Way Interaction
- The Model Can Become More Complicated and Include Moderators At All Levels

- In BRD Interactions Can Be Modeled as Fixed (e.g., Two-Way Interactions) or Random (e.g., Treatment by Class or School Interaction). Students Nested Within Schools
- Treatment and Moderator at Level 1 (Both Fixed at Level 2)
- Suppose Treatment (T) is Dummy Variable (e.g., Small Class = 1, Else = 0) and Moderator (M) is Dummy Variable (e.g., Female = 1, Else = 0)

$$\begin{split} L - 1 & y_{ij} = \beta_{0j} + \beta_{1j} T_{ij} + \beta_{2j} M_{ij} + \beta_{3j} T_{ij} M_{ij} + \varepsilon_{ij} \\ L - 2 & \beta_{0j} = \gamma_{00} + \eta_{0j} \\ L - 2 & \beta_{1j} = \gamma_{10} \\ L - 2 & \beta_{2j} = \gamma_{20} \\ L - 2 & \beta_{3j} = \gamma_{30} \end{split}$$

Example

Two-Level Model:

 $Y_{ij} = \beta_{0j} + \beta_{1j} SMCLASS_{ij} + \beta_{2j} LowSES_{ij} + \beta_{3j} Interaction_{ij} + \varepsilon_{ij}$ $\beta_{0j} = \gamma_{00} + \eta_{0j}$ $\beta_{1j} = \gamma_{10}$ $\beta_{2j} = \gamma_{20}$

$$\beta_{3j} = \gamma_{30}$$

Results

Estimates of Fixed Effects^a

050/ Confidence Interval

						95% Counde	ence interval
Parameter	Estimate	Std. Error	df	t	Sig.	Lower Bound	Upper Bound
Intercept	.202218	.048519	90.220	4.168	.000	.105829	.298606
small3	.142518	.035817	5414.423	3.979	.000	.072302	.212734
lowses3	490843	.032475	5419.302	-15.114	.000	554508	427179
sesmal	.052090	.051703	5404.219	1.007	.314	049269	.153450

a. Dependent Variable: MATHEMATICS.

Estimates of Covariance Parameters^a

						95% Confidence Interval		
Parameter		Estimate	Std. Error	Wald Z	Sig.	Lower Bound	Upper Bound	
Residual		.774205	.014925	51.873	.000	.745498	.804017	
Intercept [subject = schid3]	Variance	.128409	.024088	5.331	.000	.088903	.185470	

a. Dependent Variable: MATHEMATICS.

- In BRD Interactions Can Be Modeled as Fixed (e.g., Two-Way Interactions) or Random (e.g., Treatment by Class or School Interaction). Students Nested Within Schools
- Treatment and Moderator at Level 1: Treatment is a Random Effect at Level 2
- Suppose Treatment (T) is Dummy Variable (e.g., Small Class = 1, Else = 0) and Moderator (M) is Dummy Variable (e.g., Female = 1, Else = 0) $L - 1 \qquad y_{ii} = \beta_{0i} + \beta_{1i}T_{ii} + \beta_{2i}M_{ii} + \beta_{3i}T_{ii}M_{ii} + \varepsilon_{ii}$ $L-2 \qquad \beta_{0\,i} = \gamma_{00} + \eta_{0\,i}$ $L-2 \qquad \beta_{1\,i} = \gamma_{10} + \eta_{1\,j}$ L-2 $\beta_{2i} = \gamma_{20}$ L-2 $\beta_{3i} = \gamma_{30}$ 48

• The Mixed Effects Model is:

$$y_{ij} = \gamma_{00} + \gamma_{10}T_{ij} + \gamma_{20}M_{ij} + \gamma_{30}T_{ij}M_{ij} + \eta_{0j} + T_{ij}\eta_{1j} + \varepsilon_{ij}$$

• Where γ_{30} Represents the Two-Way Interaction and $T_{ij}\eta_{1j}$ Represents a Treatment by Level-2 (School) Interaction (Random Effect)

Example

Two-Level Model:

 $Y_{ii} = \beta_{0i} + \beta_{1i} SMCLASS_{ii} + \beta_{2i} LowSES_{ii} + \beta_{3i} Interaction_{ii} + \varepsilon_{ii}$ $\beta_{0i} = \gamma_{00} + \eta_{0i}$ $\beta_{1j} = \gamma_{10} + \eta_{1j}$ $\beta_{2i} = \gamma_{20}$ $\beta_{3i} = \gamma_{30}$

Results

Estimates of Fixed Effects^a

						95% Confidence Interval	
Parameter	Estimate	Std. Error	df	t	Sig.	Lower Bound	Upper Bound
Intercept	.195690	.049486	85.040	3.954	.000	.097299	.294081
small3	.156287	.053562	101.434	2.918	.004	.050040	.262535
lowses3	480828	.032889	5222.762	-14.620	.000	545303	416352
sesmal	.038680	.056528	3115.367	.684	.494	072155	.149516

a. Dependent Variable: MATHEMATICS.

Estimates of Covariance Parameters^a

						95% Confidence Interval		
Parameter		Estimate	Std. Error	Wald Z	Sig.	Lower Bound	Upper Bound	
Residual		.755259	.014672	51.478	.000	.727044	.784569	
Intercept [subject = schid3]	Variance	.134329	.025765	5.214	.000	.092237	.195628	
small3 [subject = schid3]	Variance	.096449	.026060	3.701	.000	.056794	.163791	

a. Dependent Variable: MATHEMATICS.

- Treatment at Level 1 (Random at Level 2) and Moderator at Level 2
- This Is a Cross-Level Interaction
- Suppose Treatment (T) is Dummy Variable (e.g., Small Class = 1, Else = 0) and Moderator (M) is Dummy Variable (e.g., Schools with High Proportions of Low SES Students = 1, Else = 0)
- The Simplest Way to Model the Interaction Effect Is

$$L - 1 \qquad y_{ij} = \beta_{0j} + \beta_{1j}T_{ij} + \varepsilon_{ij}$$
$$L - 2 \qquad \beta_{0j} = \gamma_{00} + \gamma_{01}M_j + \eta_{0j}$$
$$L - 2 \qquad \beta_{1j} = \gamma_{10} + \gamma_{11}M_j + \eta_{1j}$$

52

• The Mixed Effects Model is:

$$y_{ij} = \gamma_{00} + \gamma_{10}T_{ij} + \gamma_{01}M_{j} + \gamma_{11}T_{ij}M_{j} + \eta_{0j} + T_{ij}\eta_{1j} + \varepsilon_{ij}$$

• where γ_{11} Represents the Cross-Level Two-Way Interaction and $T_{ij}\eta_{1j}$ Represents a Treatment by Level-2 (School) Interaction (Random Effect)

Example

Two-Level Model:

$$Y_{ij} = \beta_{0j} + \beta_{1j} SMCLASS_{ij} + \varepsilon_{ij}$$

$$\beta_{0j} = \gamma_{00} + \gamma_{01} HLOWSESCHL + \eta_{0j}$$

$$\beta_{1j} = \gamma_{10} + \gamma_{11} HLOWSESCHL + \eta_{1j}$$

The Moderator Represents High Proportions of Low SES Students in Schools (> 50 Percent)

Results

Estimates of Fixed Effects^a

						95% Confidence Interval		
Parameter	Estimate	Std. Error	df	t	Sig.	Lower Bound	Upper Bound	
Intercept	.171825	.063389	66.664	2.711	.009	.045287	.298362	
small3	.149748	.063877	58.903	2.344	.022	.021925	.277571	
hlowseschl	490618	.094872	67.500	-5.171	.000	679958	301279	
SCHLSESMALL	.094840	.095394	60.847	.994	.324	095922	.285601	

a. Dependent Variable: MATHEMATICS.

Estimates of Covariance Parameters^a

						95% Confidence Interval		
Parameter		Estimate	Std. Error	Wald Z	Sig.	Lower Bound	Upper Bound	
Residual		.791611	.015371	51.499	.000	.762050	.822319	
Intercept [subject = schid3]	Variance	.136999	.026417	5.186	.000	.093882	.199917	
small3 [subject = schid3]	Variance	.102454	.027588	3.714	.000	.060440	.173673	

a. Dependent Variable: MATHEMATICS.

- Students Nested Within Classes Within Schools
- Treatment and Moderator Are at Level 1
- Treatment is Random at Levels 2 and 3 and Moderator is Fixed at Levels 2 and 3
- Suppose Treatment (T) is Dummy Variable (e.g., Within Class Grouping) and Moderator (M) is Dummy Variable (e.g., Low SES = 1, Else = 0)
- The Mixed Effects Model Is

$$y_{ijk} = \delta_{000} + \delta_{100}T_{ijk} + \delta_{200}M_{ijk} + \delta_{300}T_{ijk}M_{ijk} + \xi_{00k} + T_{ijk}\xi_{10k} + \eta_{0jk} + T_{ijk}\eta_{1jk} + \varepsilon_{ijk}$$

• where δ_{300} Represents the Two-Way Interaction and $T_{ijk}\xi_{10k}$, $T_{ijk}\eta_{1jk}$ Represent the Treatment by Level-3 (School) and by Level-2 (Class) Interactions (Random Effects)

Modeling Statistical Interaction: Three-Level BRD - 1 $L - 1 \qquad y_{ijk} = \beta_{0\,ik} + \beta_{1\,ik}T_{ijk} + \beta_{2\,ik}M_{ijk} + \beta_{3\,jk}T_{ijk}M_{ijk} + \mathcal{E}_{ijk}$ $L-2 \qquad \beta_{0\,ik} = \gamma_{00k} + \eta_{0\,jk}$ $L-2 \qquad \beta_{1\,ik} = \gamma_{10k} + \eta_{1\,ik}$ $L-2 \quad \beta_{2\,ik} = \gamma_{20k}$ L-2 $\beta_{3ik} = \gamma_{30k}$ $L - 3 \qquad \gamma_{00k} = \delta_{000} + \xi_{00k}$ $L - 3 \qquad \gamma_{10k} = \delta_{100} + \xi_{10k}$ $L-3 \quad \gamma_{20k} = \delta_{200}$ L-3 $\gamma_{30k} = \delta_{300}$ 57

- Treatment at Level 2 (Random at Level 3) and Moderator at Level 1 (Fixed)
- Suppose Treatment (T) is Class Variable (e.g., Small Class = 1, Else = 0) and Moderator (M) is a Student Variable (e.g., Gender)
- The Mixed Effects Model is:

$$y_{ijk} = \delta_{000} + \delta_{010}T_{jk} + \delta_{100}M_{ijk} + \delta_{110}T_{jk}M_{ijk} + \xi_{00k} + T_{jk}\xi_{01k} + \eta_{0jk} + \varepsilon_{ijk}$$

• where δ_{110} Represents the Two-Way Cross-Level Interaction and $T_{jk}\xi_{01k}$ Represents the Treatment by Level-3 (School) Interaction (Random Effect) 58

Modeling Statistical Interaction: Three-Level BRD - 2 $L-1 \qquad y_{iik} = \beta_{0\,ik} + \beta_{1\,ik} M_{iik} + \varepsilon_{iik}$ $L - 2 \qquad \beta_{0 \, ik} = \gamma_{00k} + \gamma_{01k} T_{ik} + \eta_{0 \, ik}$ $L-2 \quad \beta_{1\,ik} = \gamma_{10k} + \gamma_{11k}T_{ik}$ $L - 3 \qquad \gamma_{00k} = \delta_{000} + \xi_{00k}$ $L - 3 \quad \gamma_{01k} = \delta_{010} + \xi_{01k}$ $L - 3 \qquad \gamma_{10k} = \delta_{100}$ $L-3 \quad \gamma_{11k} = \delta_{110}$

- Treatment at Level 2 (Random at Level 3) and Moderator at Level 2 (Fixed)
- Suppose Treatment (T) is Dummy Variable (e.g., Small Class = 1, Else
 = 0) and Moderator (M) is a Teacher Variable (e.g., hours of PD)
- The Mixed Effects Model is:

$$y_{ijk} = \delta_{000} + \delta_{010}T_{jk} + \delta_{020}M_{jk} + \delta_{030}T_{jk}M_{jk} + \xi_{00k} + T_{jk}\xi_{01k} + \eta_{0jk} + \varepsilon_{ijk}$$

• where δ_{030} Represents the Two-Way Interaction and $\mathsf{T}_{jk}\xi_{01k}$ Represents the Treatment by Level-3 (School) Interaction (Random Effect)

$$\begin{split} L-1 & y_{ijk} = \beta_{0jk} + \varepsilon_{ijk} \\ L-2 & \beta_{0jk} = \gamma_{00k} + \gamma_{01k}T_{jk} + \gamma_{02k}M_{jk} + \gamma_{03k}T_{jk}M_{jk} + \eta_{0jk} \\ L-3 & \gamma_{00k} = \delta_{000} + \xi_{00k} \\ L-3 & \gamma_{01k} = \delta_{010} + \xi_{01k} \\ L-3 & \gamma_{02k} = \delta_{020} \\ L-3 & \gamma_{03k} = \delta_{030} \end{split}$$

- Treatment at Level 2 (Random at Level 3) and Moderator at Level
 3
- Suppose Treatment (T) is Dummy Variable (e.g., Small Class = 1, Else = 0) and Moderator (M) is a School Variable (e.g., School with High Proportions of Low SES Students = 1 Else = 0)
- The Mixed Effects Model is:

$$y_{ijk} = \delta_{000} + \delta_{010}T_{jk} + \delta_{001}M_k + \delta_{011}T_{jk}M_k + \xi_{00k} + T_{jk}\xi_{01k} + \eta_{0jk} + \varepsilon_{ijk}$$

• Where δ_{011} Represents the Two-Way Cross-Level Interaction and $T_{jk}\xi_{01k}$ Represents the Treatment by Level-3 (School) Interaction (Random Effect)

$$\begin{split} L - 1 & y_{ijk} = \beta_{0\,jk} + \varepsilon_{ijk} \\ L - 2 & \beta_{0\,jk} = \gamma_{00k} + \gamma_{01k} T_{jk} + \eta_{0\,jk} \\ L - 3 & \gamma_{00k} = \delta_{000} + \delta_{001} M_k + \xi_{00k} \\ L - 3 & \gamma_{01k} = \delta_{010} + \delta_{011} M_k + \xi_{01k} \end{split}$$

Power and Interaction Effects (IE)

- Tests of Interaction Effects are Typically Underpowered (Compared to Tests for Main Effects)
- Empirical Evidence in Medicine Suggests that the IE Needs to Be at Least Twice as Large as the Main Treatment Effect to Achieve Similar Power
- If Magnitude Is the Same as the Main Treatment Effect Power is Typically Smaller. Larger Sample Sizes Are Typically Needed to Detect IE
- Power in HLM (Moderators) Visit the Link <u>https://www.causalevaluation.org/</u>

Power and Interaction Effects (IE): Two-Level CRD

- The Sample Size at Top Level Influences Power More than the Sample Size at the First Level
- For Level-1 Moderators that Are Fixed at Level 2 the Sample Size at Level 1 Matters as Well
- Power is Smaller for Level-2 Moderators
- Power is Higher for Lower-Level Fixed Moderators
- Level-1 and Level-2 Covariates Improve Power

Power and Interaction Effects (IE): **Two-Level BRD**

- The Sample Size at Top Level Influences Power More than the Sample Size at the First Level (Especially for Random Treatment Effects)
- Level-1 and Level-2 Covariates Improve Power
- Level-1 Moderators can be Treated as Random or Fixed at the Second Level. Power is Higher for Fixed **Moderators**
- When Level-1 Moderators Are Fixed the Sample Size at Level 1 Matters as Well

Power and Interaction Effects (IE): Three-Level CRD

- The Sample Size at Top Level Influences Power More than the Sample Sizes at Lower Levels
- When Lower-Level Moderators Are Fixed Lower-Level Sample Sizes Matter as Well
- Power is Smaller for Level-3 Moderators. Power is Larger for Level-1 Moderators
- Covariates Improve Power
- Power is Higher for Lower-Level Fixed Moderators