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Main Treatment Effects

* In Experiments Typically We Calculate an Average
Treatment Effect

 We Are Interested in Estimating Treatment Effects for
All Individuals in the Sample

* We Compute the Average Difference Between
Treatment and Control Groups in Outcomes of

Interest (e.g., Achievement) for All Individuals (Main
Effect)



Main Treatment Effects

In the Simplest Case We Can Conduct a t-test for
Independent Samples to Examine the Significance of
the Main Treatment Effect

Alternatively (and Equivalently) We Can Run a Simple
Regression or ANOVA (with a Dummy Variable for the
Treatment). The t-test is the Same (Assuming the
Variances in the Two Groups Are Equal)

We Can Run ANCOVA or Multiple Regression to
Include Covariates

In Nested Designs we Use Multilevel Models (HLM)



Does the Treatment Have the Same
Effect On All Groups of Individuals?

One Fundamental Objective of U.S. Education is to
Close the Achievement Gap Among Important Student
Groups

School Interventions Have Frequently Dual Objectives:

— Increase Student Outcomes (e.g., Achievement) for All
Students

— Reduce the Achievement Gap
Note that Decreasing the Achievement Gap Suggests

that the Treatment Effect May Not Be the Same for All
Students

Some Students May Benefit More from Treatments
than Others



Does the Treatment Have the Same
Effect On ALL Groups of Individuals?

Interventions May Help Reduce the Gender,
Race/Ethnicity, SES, ELL, and Low- High-Achievement

gap

Interventions May Help Reduce Differences between
Schools (e.g., Urban and Rural schools)

This Could Be a Byproduct of the Intervention or
Could be one of the Main Objectives of the Study

For example, the Objective Is to Reduce/Close the
Achievement Gap at the Individual or School Level



Differential Effects

* Exposure to Treatment Differs for Various
Groups of Individuals

* The Effectiveness of the Treatment Varies
Across these Groups

* These Are Called Differential Effects of the
Treatment for Certain Groups of Individuals



Differential Effects

Examples:
Low Achievers May Benefit More from Small Classes

Low Achievers May Benefit More from Effective
Teachers

Low Achievers May Benefit More from Data Driven
Assessments

Assessment Programs May Be More Beneficial To Rural
Schools

These Differential Effects Are Introduced in Regression
Models as Statistical Interactions

Alternatively, to Determine Treatment Effects at
Different Levels of Continuous Outcomes (e.g.,
Achievement) One Can Use Quantile Regression



Interaction Effects

e |Interaction Effects Are a Related Notion to
Differential Effects

* The Idea Is that the Treatment Interacts with
Individual Characteristics (e.g., Low SES).

* Through the Interaction the Treatment Could
Be Maximized for a Specific Group of
Individuals (e.g., low SES students) or Clusters
(e.g., Rural Schools) on a Specific Outcome
(e.g., Achievement)



Interaction Effects

* Pioneering Work by Cronbach and Snow
(1977) Discussed Aptitude-Treatment
Interactions in Education

 The Idea is that a Treatment (e.g., Highly
Structured Instruction) May Benefit Some

Students (e.g., Low Achievers) More than
Others



Moderator Effects

Same Notion as Interaction or Differential Effects

Variables that Interact with Treatments Are Called
Moderators and Indicate the Degree to Which the
Treatment Effect on an Outcome Depends on the
Moderator (Baron & Kenny, 1986)

Moderator Variables Can be Categorical (e.g.,
Gender, Race/Ethnicity), Ordinal (e.g., SES, Likert
Scale), or Continuous (e.g., Ability-Prior
Achievement, Teacher Experience)

Analytically, Interaction or Moderator Effects Are
Introduced in Linear Regression Models as
Statistical Interactions



Moderator Effects

The Moderator May Affect the Direction and the
Magnitude of the Treatment Effect

That Is, the Moderator Variable Will Change the
Strength of the Association Between Treatment and
Outcome

The Moderator Can Amplify or Reverse the Treatment
Effect

The Question of Interest Is How Universal Is the Effect?

The Moderator Is Selected In Accord with the
Researcher’s Interests (e.g., Research On Gender,
Race, SES, Achievement, School Differences, Wages,
etc.)



What is a Statistical Interaction?

* Suppose We Are Interested in Examining Whether
Small Classes Increase Achievement for Low SES
(e.g., Students Eligible for Free or Reduced-Price
Lunch) More than Other Students

 We Can Construct Two Binary Variables for Small
Class and for Low SES Status and Create a Statistical
Interaction by Multiplying the Two Variables

* In this Example Low SES Status Is a Moderator
Variable. The Idea is that the Effect of Small Class is
Different for Low SES than for Higher SES Students



Modeling Statistical Interaction

 The Simplest Form of Interactions is Two-Way
Interactions Between Two Variables (That’s
What We Discuss Here). A Pair of Variables

Creates One Interaction Term

* Three-Way Interactions Are Between Three
Variables (More Complicated Model). Three
Variables Create Three Two-Way Interaction
Terms and One Three-Way Interaction



Modeling Statistical Interaction

* |nteractions Can Be Constructed between

— Continuous with Binary Variable (e.g., School Composition
and Private-Public School)

— Continuous with Continuous Variable (e.g., Teacher
Effectiveness and Professional Development)

— Dummy with Dummy Variable (e.g., Small Class and Low-
High SES)

”

 Next, We Will Discuss Interactions with a “Treatment
(Binary Variable)

* To Model Interactions, We Include in the Regression
Equation All Main Effects (e.g., Small Class and Low
SES) and the Two-Way Interaction (the Product of the
Two Variables)



Modeling Statistical Interaction in
Regression

e Suppose Treatment (T) is Dummy Variable (e.g., Small
Class = 1, Else = 0) and Moderator (M) is Dummy Variable
(e.g., Low SES Student = 1, Else = 0)

* The Simplest Way to Model the Interaction Effect Is
v, =Pyt bLi+ M+ pTM, + ¢,

* Wherey Is Outcome, € Is Residual, and B’s Need to Be
Estimated (B; Is the Coefficient of Interest)



Hypothesis Testing

"he Null Hypothesis States that the Interaction
‘erm Is Zero

"he Alternative Hypothesis States that the
nteraction Term is Different than Zero

n this Case the Most Important Coefficient Is the
nteraction Effect

When the t-test Is Significant the Treatment Effect
Is Changed by the Moderator




Class Size Example:
Data

* Project STAR is a Longitudinal Field Experiment

e Students and Teachers Were Randomly
Assighed to Small and Regular Size Classes

Within Grades /Schools



OLS Analysis

Regression, Population Model:

Vi = ,BO + ,BlsMCLASSl + IBZLOWSESL' + ,B3INTl + o

Where INT Represents the Interaction Term.
Suppose Y Represents Mathematics Scores



Results

Coefficients”
standardized

Unstandardized Coefficients — Coefficients 95.0% Confidence Interval for B

Mzl B std. Errar Beta t Sig.  LowerBound  Upper Bound
1 (Constant) 260 022 11.948 000 27 303
SMALL CLASS A4 038 066 3.763 000 068 215

LOW SES - 30 031 -7 -20.365 000 - {91 -A70

LOW SES SMALL CLASS 038 055 014 95 487 - 0649 145

INTERACTION

a. Dependent Variahle: MATHEMATICS
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Interpreting Statistical Interactions

Intercept/Constant: Average Math Achievement of High SES
Students in Regular Classes

Small Class Coefficient: Average Math Difference Between
Small and Regular Classes for High SES Students

Low SES Coefficient: Average SES (Low versus High) Math
Achievement Gap in Regular Classes

Interaction Coefficient: The Low-High SES Gap in Mathematics
Is Reduced in Small Classes by an Average of 0.038 Points
(Compared to the Regular Size Classes Gap), (Not Statistically
Significant)

OR the Treatment Effect (the Small-Regular Size Gap) for Low
SES Students Is Larger (than that for High SES Students) by an
Average of 0.038 Points in Mathematics (Not Statistically
Significant)



Centering Main Variables

Some Researchers Center the Treatment and Moderator
Variables at their Means and then Compute the Product
Term

Centering Helps with Collinearity and Affects Only
Estimates of Main Effects and their Standard Errors (Not
Interactions)

Standard Errors of the Main Effects Become Smaller
Typically and the Intercept Is Different as Well

Centering Seems more Natural when Continuous
Variables Are Involved



Centering Main Variables
* The Previous Model Becomes:
y=PBo+ BT —=T)+B(M—M)+Bs(T—T)(M—M) +¢
 When 183 —( then

y = (Bo — B1T — BoM) + 1T + Bo.M + €

* which Indicates that the Slopes Are the Same as
without Centering, but the Intercept Changes and
Complicates the Interpretation



Centering Main Variables
e When ﬂg +() the Model Becomes:

Yy = (,30 - BiT — B2M + ﬁsm) + (,31 — ﬁsM)T +
(B2 — BsT)M + 3TM + ¢

* which Shows that the Interaction Term Does not
Change but the Intercept and the Slopes Change and
Complicate the Interpretation



Results: Centered Variables

Coefficients”
Standardized
LInstandardized Coefficients Coefficients 85.0% Confidence Interval for B

Madel B stel. Error Beta t Sig. Lower Bound  Upper Bound
1 (Constant) 008 013 G5B 512 -017 033

SMALL CLASS A5G 027 075 5.850 o, 106 213

CEMTERED AT MEANM

LOW SES CENTERED AT -618 025 -.311 -24.247 000 -.G6A -.568

MEAN

LOW SES SMALL CLASS 038 055 008 95 ABT - 064 145

INTERACTION WITH

CENTERED VARIABLES

a. DependentVariahle: MATHEMATICS

e Notice that the SEs of the Main Effects are now Smaller
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Another Example of an Interaction

* Does Being Male Faculty Have a Greater Impact on
Salary with more Years of Experience?

e Stated differently:

— Do Male Faculty Earn Higher Salaries than their Female
Peers over Time (“Treatment” Here Is Gender)?

— For Every Additional Year of Experience, Individuals Earn
more, on Average (Experience Is the Moderator
Variable)

— Do Male Faculty Get Higher Increases for each
Additional Year of Experience Compared to their Female
Peers?



Allows the Male and Female Lines to
Have Different Slopes

males

o

salary

females

yrstch

* Yrstch is Years of Experience



Add an Interaction Term to Capture
the Added Effect

* This Model Assumes that the Effect of Years of
Experience Is the Same for Men and Women
(Experience is a Control Variable)

salary = [, + p,yrstch+ o, female + &

* The Model Below Relaxes this Assumption and
Allows Experience to Interact with Gender

salary = B, + p,yrstch+ B, female+ B,(yrstch™ female)+ ¢



Interaction: Null Hypothesis

 The Impact of Years of Experience on Faculty
Salary is the Same for both Genders



Effect of Specific Variables Harder to
Interpret with Interactions

* In the Model
salary = B, + p,yrstch+ B, female+ B,(yrstch™ female)+ ¢

e the Effect of Experience for Males Is the
Estimate of 6, and at Average Levels of

Experience, the Estimated Effect of Being
Female Is

,32 + ,33 * yrstch



Another Example

Do Gender Differences in Wages Depend on Years
of Education?

Gender Is the “Treatment” and Years of
Education Is the Moderator Variable



What Do These Graphs Indicate?

wage

men

(a) educ

wage

women

N

men

(b) educ
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Interactions in Multilevel
Designs/Models



Modeling Statistical Interaction:
Two-Level CRD - 1

e Qutcome is Math Scores
e Treatment and Moderator at Level 2

e Suppose Treatment (T) is a Dummy Variable (e.g.,
School Intervention = 1, Else = 0) and Moderator (M) is
Dummy Variable (e.g., Rural School = 1, Urban = 0)

* The Simplest Way to Model the Interaction Effect Is

L-1 yij:lBOj_l_gij
L-2 IBOj :7/00+7/01Tj+7/02Mj+7/03TJ'MJ+7701



Modeling Statistical Interaction:

Two-Level CRD — 1 Example

* Treatment Represents Interim Assessments in Grades

K-8 (School Level)

 Moderator Represents Rural and Urban Schools (School

Level)

Estimates of Fixed Effects”

95% Confidence Interval

Parameter Estimate  Std. Error df t Sig. Lower Bound  Upper Bound
Intercept -.238060 149574 33732 -1.592 121 - 542123 066003
treatment  -.050011 200831 33.835 -.244 805 -.458223 358200
rural 260266 173433 34263 1.501 143 -.082083 B12625
treatrural A75248 229866 34226 762 451 -.201782 G42278

a. Dependent Variahle: Standardized values of (math)



Interpreting Statistical Interactions

Intercept/Constant: Average Math Achievement In Control
Schools In Urban Schools

Treatment Coefficient: Average Math Difference Between
Treatment and Control Schools in Urban Schools

Rural School Coefficient: Average Rural versus Urban
Schools Math Achievement Gap in Control Schools

Interaction Coefficient: The Rural-Urban School Gap in
Mathematics Is Larger in Treatment Schools by an Average
of 0.175 Points (Compared to the Control Schools Gap)
(Not Statistically Significant)

OR the Treatment Effect in Rural Schools Is Larger (than
that in Urban Schools) by an Average of 0.175 Points in
Mathematics (Not Statistically Significant)



Modeling Statistical Interaction:
Two-Level CRD - 2

Treatment at Level 2 and Moderator at Level 1 (Fixed at
Level 2)

This Is a Cross-Level Interaction

Suppose Treatment (T) is a Dummy Variable (e.g., School
Intervention = 1, Control = 0) and Moderator (M) is a
Dummy Variable (e.g., Female = 1, Male = 0)

The Simplest Way to Model the Interaction Effect Is
L-1 y,=p,,+B,M,+¢,

L—2 /Bo]' :7/00+7/01Tj+770j
L—2 /81]' :7/10+7/11Tj



Modeling Statistical Interaction:
Two-Level CRD - 2

 The Mixed Effects Model is:
Vi =700 +7/01Tj "'7/10Mij +7/11T]’sz Ty TE;

* Where y,, Represents the Cross-Level Two-Way
Interaction



Modeling Statistical Interaction:
Two-Level CRD — 2 Example

* Treatment Represents Interim Assessments in Grades K-8
(School Level)

 Moderator Represents Female and Male Students
(Student Level)

Estimates of Fixed Effects”

45% Confidence Interval

Parameter  Estimate  Std. Error df Sig. Lower Bound  Upper Bound
Intercept -022597 065169 56.674 -.347 730 - 163112 107918
treatment 070702  .0B3267 56,991 B4 3949 -.096037 237441
female 003545 019893  20869.970 78 B5Y -.035447 042537
treatfemale 004697 026568  20B868.169 ATT BG0 -.047378 056773

a. Dependent Variable: Standardized values of (math)



Interpreting Statistical Interactions

Intercept/Constant: Average Math Achievement In
Control Schools for Male Students

Treatment Coefficient: Average Math Difference
Between Treatment and Control Schools for Male
Students

Female Coefficient: Average Female-Male Math
Achievement Gap in Control Schools

Interaction Coefficient: The Female-Male Gap in
Mathematics Is Larger in Treatment Schools by an
Average of 0.005 Points (Compared to the Control
Schools Gap) (Not Statistically Significant)

OR the Treatment Effect for Female Students Is Larger
(than that for male Students) by an Average of 0.005
Points in Mathematics (Not Statistically Significant)



Modeling Statistical Interaction:
Three-Level CRD - 1

Students Nested Within Classes Within Schools
Treatment and Moderator at Level 3

Suppose Treatment (T) is Dummy Variable (e.g., School
Intervention = 1, Else = 0) and Moderator (M) is Dummy
Variable (e.g., Private School = 1, Else = 0)

The Simplest Way to Model the Interaction Effect Is
L-1 Yik = IBOjk T &y

L=2 [y =Yoo tToj
L=3 " Yoor =0u0 T 00} +00sM + 0y LM, + Gy



Modeling Statistical Interaction:
Three-Level CRD - 2

Treatment at Level 3 and Moderator at Level 2 (Fixed at Level 3)
This Is a Cross-Level Interaction

Suppose Treatment (T) is Dummy Variable (e.g., School
Intervention = 1, Else = 0) and Moderator (M) is Dummy Variable
(e.g., Teacher Certified = 1, Else = 0)

The Simplest Way to Model the Interaction Effect Is
L—1 yijk:IBOjk_I_gijk
L-2 :Bo]'k:7/00k+7/01ijk+770jk
L=3 " Yoor =00 T %0l + Soo
L=3 7 =0p + 0T,



Modeling Statistical Interaction:
Three-Level CRD - 2

e The Mixed Effects Model is:

Vik = Ono + Opoi i + oM T O M T Goor T 0o i T €

* Where §,,, Represents the Cross-Level Two-Way
Interaction



Modeling Statistical Interaction:
Three-Level CRD - 3

Treatment at Level 3 and Moderator at Level 1 (Fixed at Levels 2 and
3)

This Is Also a Cross-Level Interaction

Suppose Treatment (T) is Dummy Variable (e.g., School Intervention
=1, Else = 0) and Moderator (M) is Dummy Variable (e.g., Low SES =
1, Else = 0)

The Simplest Way to Model the Interaction Effect Is
L—-1 Yiik IBO]k_I_IBl]kMyk_I_g

L=2" S = Yoox + Mo

L-2 ,81jk = Yok

L=3 ¥ =0000 + %01 Lr + Soox
L—=3 ¥ =000+ 0101



Modeling Statistical Interaction:
Three-Level CRD - 3

e The Mixed Effects Model is:

Vik = Ono + Opoi Ty T 0y06M it T O [, M it T Goo T 700 ik T €

* Where 6,4, Represents the Cross-Level Two-Way
Interaction

* The Model Can Become More Complicated and
Include Moderators At All Levels



Modeling Statistical Interaction:
Two-Level BRD

* In BRD Interactions Can Be Modeled as Fixed (e.g., Two-Way
Interactions) or Random (e.g., Treatment by Class or School
Interaction). Students Nested Within Schools

* Treatment and Moderator at Level 1 (Both Fixed at Level 2)

e Suppose Treatment (T) is Dummy Variable (e.g., Small Class = 1,
Else = 0) and Moderator (M) is Dummy Variable (e.g., Female =
1, Else = 0)

L—-1 y, =0, +0,1,+0, M,+ [ T.M, 6 +¢&,

L—=2  fo;, = Voo + 1,
L—=2 [, =0
L=2 [, =7
L—2

183]' = 730



Example

Two-Level Model:
=P + B SMCLASS, +, LowSES, + [, Interaction,; +e¢;
Boj = Yoo 1,
By = Yo
32j = V20
By = 740




Results

Estimates of Fixed Effects”

95% Confidence Interval

Parameter Estimate  Std. Errar df t Sig. Lower Bound  Upper Bound
Intercept 202218 048514 60.220 4168 000 105829 2898606
small3 142518 035817 5414423 3.9749 000 072302 212734
lowsesd  -480843 032475 5418302 15114 000 - 504508 - 427174
sesmal 052060 051703  5404.219 1.007 314 -.049269 153450

a. Dependent Variable: MATHEMATICS,

. . d
Estimates of Covariance Parameters

95% Confidence Interval

Parameter Estimate  Std. Error Wald £ Sig. Lower Bound  Upper Bound
Residual J742048 0144925 51.873 000 7454498 804017
Intercept [subject= Variance 1284049 0240383 5.331 000 088903 185470
schid3]

a. Dependent Variable: MATHEMATICS.



Modeling Statistical Interaction:
Two-Level BRD - 1

* |n BRD Interactions Can Be Modeled as Fixed (e.g., Two-Way
Interactions) or Random (e.g., Treatment by Class or School
Interaction). Students Nested Within Schools

e Treatment and Moderator at Level 1: Treatment is a Random
Effect at Level 2

e Suppose Treatment (T) is Dummy Variable (e.g., Small Class = 1,
Else = 0) and Moderator (M) is Dummy Variable (e.g., Female =
1, Else = 0)

—1 yij:IBO]‘_I_lBlj]:j_l_IBZjMij_l_IBij]:jMij_l_gij

Lo, =Yoo+,
L, =7+,
Bs; =72
L5 = V30

N SN NS
o
N ONNN



Modeling Statistical Interaction:
Two-Level BRD - 1

e The Mixed Effects Model is:

yy—7/00+7/10T +7/20M +7/30TM T
Mo; + 10, + &,

* Where 73, Represents the Two-Way Interaction and 1,7,
Represents a Treatment by Level-2 (School) Interaction
(Random Effect)



Example

Two-Level Model:
=P + B SMCLASS, +, LowSES, + [, Interaction,; +e¢;
Boj = Yoo 1,
B =10+
32j = V20
By = 740




Results

Estimates of Fixed Effects”

45% Confidence Interval

Parameter Estimate  Std. Error flf t Sig. Lower Bound  Upper Bound
Intercept 195690 0459486 85.040 3.954 000 097295 294081
small3 166287 053562 101.434 2.918 004 050040 262535
lowses3 -480828 032889 5222762  -14.620 000 -.545303 - 416352
sesmal 038680 056528  3115.367 624 494 -.072155 149516

a. DependentVariahle: MATHEMATICS.

Estimates of Covariance Parameters®

95% Confidence Interval

Parameter Estimate  Std. Error Wald £ Sig. Lower Bound  Upper Bound
Residual THA259 014672 51.478 000 727044 784569
Intercept [subject= Variance 134324 N25765 5.214 000 092237 95628
schid3]

small3 [subject=schid3]  Variance 096449 026060 3.701 000 056794 163791

a. Dependent Variable: MATHEMATICS.



Modeling Statistical Interaction:
Two-Level BRD - 2

Treatment at Level 1 (Random at Level 2) and Moderator
at Level 2

This Is a Cross-Level Interaction

Suppose Treatment (T) is Dummy Variable (e.g., Small
Class = 1, Else = 0) and Moderator (M) is Dummy Variable

(e.g., Schools with High Proportions of Low SES Students =
1, Else = 0)

The Simplest Way to Model the Interaction Effect Is
L—1 yij:IBOj_I_IBlj]—;j_l_gij
L—2 /60j:7/00+7/01Mj+770j
L—2 ,61j:7/1o+7/11Mj+771j



Modeling Statistical Interaction:
Two-Level BRD - 2

e The Mixed Effects Model is:

Vi = 700"'7/10T +701M "'7/11TM T
My T 11, +&;

* where };,Represents the Cross-Level Two-Way
Interaction and 7,7, Represents a Treatment by Level-2
(School) Interaction (Random Effect)



Example

Two-Level Model:

Y, =B, TB;SMCLASS +¢g,;
Boi = Voo + Vo HHLOWSESCHL + 1, ;
B, =% + Y HLOWSESCHL + 17,

The Moderator Represents High Proportions of Low SES
Students in Schools (> 50 Percent)



Results

Estimates of Fixed Effects”

95% Confidence Interval

Parameter Estimate  Std. Error df t Sig. Lower Bound  Upper Bound
Intercept 171825 063389 66.664 2.711 004 045287 298362
small3 144748 063877 58.903 2.344 022 021425 277571
hlowseschl - 490618 084872 67.500 51T .000 - 679958 -.301274
SCHLSESMALL 094840 095394 60.847 494 324 -085522 285601

a. Dependent Variahle: MATHEMATICS.

Estimates of Covariance Parameters®

95% Confidence Interval

Parameter Estimate  Std. Error Wald Z Sig. Lower Bound  Upper Bound
Residual T91611 015371 51.4498 000 J62050 8223149
Intercept [subject= Variance 3659949 026417 5186 000 083882 89917
schid3]

small3 [subject= schid3]  Variance 102454 027588 3.714 000 060440 AT3673

a. DependentVariable: MATHEMATICS.



Modeling Statistical Interaction:
Three-Level BRD -1

Students Nested Within Classes Within Schools
Treatment and Moderator Are at Level 1

Treatment is Random at Levels 2 and 3 and Moderator is Fixed at Levels
2 and 3

Suppose Treatment (T) is Dummy Variable (e.g., Within Class Grouping)
and Moderator (M) is Dummy Variable (e.g., Low SES = 1, Else = 0)

The Mixed Effects Model Is

Vi = O T 5100Tijk +0y00M jy + 0300 T M

ijk ik ijk

Goo + Z‘jkfl()k /Y ];'jknljk T &

where 654, Represents the Two-Way Interaction and T;, &0, Ti N1k
Represent the Treatment by Level-3 (School) and by Level-2 (élass)
Interactions (Random Effects)

_|_
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Modeling Statistical Interaction:

Three-Level BRD - 1

Vie = Poj + Py + BoyMy + 55 4 Ty
Dok = Yoor T Mo j

D =Vox T ha

Do = Vao0i

Bs i = Vo

Yook = 000 T Soox

Y10k = 9100 T Siox

Yook = 5200
V3o = 5300

M.

ijk

+gijk



Modeling Statistical Interaction:
Three-Level BRD - 2

Treatment at Level 2 (Random at Level 3) and Moderator at
Level 1 (Fixed)

Suppose Treatment (T) is Class Variable (e.g., Small Class = 1,
Else = 0) and Moderator (M) is a Student Variable (e.g.,
Gender)

The Mixed Effects Model is:

ko 5000 +5010T +5100M T 5110T M, +

ik

Goor + Tjk501k Tow T €

where 6110 Represents the Two-Way Cross-Level Interaction

and T,&,,, Represents the Treatment by Level-3 (School)
Interactlon (Random Effect)

lJ ijk



Modeling Statistical Interaction:
Three-Level BRD - 2

Viik ,Bo]k +IBIJkMyk T &
,Bo]'k =Yoor T 7/01ijk /i
IBIjk =Jiok T 7/11ijk
Yoox = 9000 + Soox
Your = %010 T Sone
V0t = 9100
Y1k = Ono

~ NN NN NS
|
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Modeling Statistical Interaction:
Three-Level BRD - 3

Treatment at Level 2 (Random at Level 3) and Moderator at Level 2
(Fixed)

Suppose Treatment (T) is Dummy Variable (e.g., Small Class = 1, Else
= 0) and Moderator (M) is a Teacher Variable (e.g., hours of PD)

The Mixed Effects Model is:

T 5000 T 5010T T 5020M w T 5030T M T

Gook T Tjk§01k Tow T €

where 5030 Represents the Two-Way Interaction and T, &,

Represents the Treatment by Level-3 (School) Interaction (Random
Effect)

l]



Modeling Statistical Interaction:
Three-Level BRD - 3

L-1 yu =Pl tey

L=2 [y =Yoo TVoul i+ VouM o + Vo LM 410,
L=3 Y4 =00 s

L-3 ¥ =00+

L=3 ¥ = O
L=3 ¥ =0



Modeling Statistical Interaction:
Three-Level BRD - 4

Treatment at Level 2 (Random at Level 3) and Moderator at Level
3

e Suppose Treatment (T) is Dummy Variable (e.g., Small Class = 1,

Else = 0) and Moderator (M) is a School Variable (e.g., School with
High Proportions of Low SES Students = 1 Else = 0)

e The Mixed Effects Model is:

Yik = Opp 5010Tjk + 0y M, + 5011TjkMk T

Goor + Tjkfmk Tox T

* Where 6,,, Represents the Two-Way Cross-Level Interaction and

Ty &o1x Represents the Treatment by Level-3 (School) Interaction
(Random Effect)
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Modeling Statistical Interaction:
Three-Level BRD - 4

Yik = /Bo]'k T &
IBOjk = Yook 7/01ijk o ix

Yoor = 9000 T QoM i + Soox
Your = 9010 T Oo1i M + Soii

|
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Power and Interaction Effects (IE)

Tests of Interaction Effects are Typically Underpowered
(Compared to Tests for Main Effects)

Empirical Evidence in Medicine Suggests that the |IE Needs to
Be at Least Twice as Large as the Main Treatment Effect to
Achieve Similar Power

If Magnitude Is the Same as the Main Treatment Effect

Power is Typically Smaller. Larger Sample Sizes Are Typically
Needed to Detect |IE

Power in HLM (Moderators) Visit the Link

https://www.causalevaluation.org/



https://www.causalevaluation.org/

Power and Interaction Effects (IE):
Two-Level CRD

The Sample Size at Top Level Influences Power More
than the Sample Size at the First Level

For Level-1 Moderators that Are Fixed at Level 2 the
Sample Size at Level 1 Matters as Well

Power is Smaller for Level-2 Moderators
Power is Higher for Lower-Level Fixed Moderators

Level-1 and Level-2 Covariates Improve Power



Power and Interaction Effects (lE):
Two-Level BRD

The Sample Size at Top Level Influences Power More
than the Sample Size at the First Level (Especially for
Random Treatment Effects)

Level-1 and Level-2 Covariates Improve Power

Level-1 Moderators can be Treated as Random or Fixed
at the Second Level. Power is Higher for Fixed
Moderators

When Level-1 Moderators Are Fixed the Sample Size at
Level 1 Matters as Well



Power and Interaction Effects (lE):
Three-Level CRD

The Sample Size at Top Level Influences Power More
than the Sample Sizes at Lower Levels

When Lower-Level Moderators Are Fixed Lower-Level
Sample Sizes Matter as Well

Power is Smaller for Level-3 Moderators. Power is Larger
for Level-1 Moderators

Covariates Improve Power

Power is Higher for Lower-Level Fixed Moderators
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