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Experimental Design
 “Experimental Design” encompasses:

1. Strategies for organizing data collection
2. Involves knowledge of data generating processes
3. Data analysis procedures matched to those data 

collection strategies
 The researcher is interested in determining the effect of 

some treatment (e.g., school intervention) on some units-
subjects outcome (e.g., student achievement)

 Typically, two groups are created: one treatment and one 
control group

 Typically, the designs are balanced (i.e., equal sample 
sizes in both groups)

 The effect is the change in the outcome of interest (e.g., 
achievement) by some intervention/treatment

 This change in the outcome is designed to have a 
beneficial effect (e.g., increase achievement)
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Experimental Design:
Analysis

 Analysis of Variance (ANOVA) is a traditional 
analysis procedure applied to experimental designs, 
especially for Randomized Control Trials (RCTs)

 Other appropriate analytic procedures include:
 Regression models
 Multilevel or hierarchical models
 Statistical models applied to aggregates (classroom or 

school means)
 All these procedures estimate the mean difference 

in an outcome between treatment and control 
groups

 Analytic procedures should match research 
hypotheses, design, and a priori power analyses
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Why Do We Need 
Experimental Design?

 Aim to identify treatment effects in the presence of 
variability (differences) of units and/or responses

 Variability exists because:
 Units (students, teachers, & schools) are not identical 
 Units respond in different ways to treatments

 We need experimental design to control this variability 
(i.e., equate treatment and control groups on average at 
the beginning of the experiment) and then identify 
treatment effects on outcomes of interest

 It is the best way to identify what causes a change in an 
outcome of interest (when threats to the internal validity 
of the experiment are minimized)



History
 The idea of controlling variability by creating similar –

equivalent groups through design has a long history

 In 1753 Sir James Lind’s published the treatise of the 
scurvy describing his study where 12 scurvy patients 
(sailors who spent much time in the sea) were 
assigned to six similar groups that received different 
treatments (proposed remedies)

 One of the treatments involved consumption of 
oranges and lemons. People in that group showed 
dramatic improvement compared to the other groups



History

 In the late 1890’s, Fibiger examined the 
effectiveness of diphtheria antitoxin in treating 
diphtheria patients and assigned patients to a 
treatment (received antitoxin) or a control group 
(standard treatment) according to the day they 
were admitted (i.e., every other day patients 
were assigned to different groups) 

 In the 1930s, Amberson et al. (1931) used 
random assignment via a coin-toss to create 
equivalent groups to examine the effects of 
sanocrysin on pulmonary tuberculosis



History
 The first modern randomized clinical trial in 

medicine is considered to be the trial of 
streptomycin for treating tuberculosis 

 It was conducted by the British Medical Research 
Council in 1946 and reported in 1948

 Patients were randomly assigned to a group that 
took streptomycin and a group that did not  



History

 Another renowned RCT was the polio vaccine 
field trial conducted in the U.S. in 1954

 Children ages 6-9 were assigned to a treatment 
group that received the polio vaccine or a control 
group that received a placebo



History

 Studies in crop variation I – VI (1921 – 1929)

 In 1919 a statistician named Fisher was hired at 
Rothamsted agricultural station

 They had a lot of observational data on crop 
yields and hoped a statistician could analyze it to 
find effects of various treatments



History

 In a series of studies, within 8 years, Fisher 
invented the basic principles of experimental 
design and analysis of variance and covariance 

 He also invented control of variation by random 
assignment



History
 In the field of education two eminent books introduced Fisher’s 

methodological foundations of experimental design and analysis 

 In 1940 Lindquist published his book about Statistical Methods in 

Educational Research that discussed random allocation of units and 

principles of experimental design and analyses 

 In the 1960s, Campbell and Stanley (1966) outlined 

methodologies for designing experiments and quasi-experiments as 

well as analyzing appropriately data from experiments



History
 In the field of education, a noteworthy large-scale RCT was 

conducted in the mid-1980s in the state of Tennessee, known as the 

Tennessee class size experiment or Project STAR (Student Teacher 

Achievement Ratio)

 A four-year experiment that followed a cohort of kindergarten 

students in 79 schools through third grade. In the first year of the 

study, within each school, kindergarten students and teachers were 

randomly assigned to either a small class, a regular size class, or a 

regular size class with a full-time teacher assistant 



History

 Since 2002 mainly due to the IES funding streams 

and the emphasis IES has placed on rigorous research 

designs there has been an abundance of RCTs 

 IES has funded nearly 350 RCTs since its inception
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Principles of Experimental Design

Objective: Control variability and identify 
systematic effects of treatments on outcomes
 Create sample groups that are on average 

equivalent at the beginning of the experiment
 Measures of traits are similar across groups
 Groups would have the same response if given 

the same treatment.

Methods to achieve this goal include:
1.  Random Assignment
2.  Matching
3.  Statistical Adjustment

Quasi-experiments

Observational studies

“True” experiments
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Control by Random Assignment
Controls for the effects of all characteristics: 
 observables or non-observables
 known or unknown
 Makes treatment and control groups equivalent on 
average on all characteristics

 Differences in outcomes after treatment that are larger than 
would be expected by chance can be attributed to the 
treatment effect and not to preexisting differences between the 
groups (causal inference)

 Each unit (e.g., student, classroom, school) is assigned to a 
treatment or control condition by chance (a random 
mechanism) 

 Treatment and control groups are equivalent on average in the 
beginning of the study and changes in outcomes should be 
due to manipulating an independent variable (the treatment) 
only
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Control by Random Assignment

 Considered to be the gold standard in clinical 
research. The last 20 years arguably, it is 
considered to be the gold standard in education 
research. 

 Currently used frequently in education.
Strongest design for causal inference
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Control by Matching
 Known sources of variation may be eliminated by 

matching (i.e., matching is conducted using 
measured/observed variables)

 For example, eliminate district, school, or classroom 
effects before comparing students (e.g., compare students 
in similar classrooms, schools or districts)

 Matching can take place in the design phase of a study or 
in data analysis. For example, propensity score matching 
is one method that creates similar groups to estimate 
treatment effects using observed covariates

 Matching methods “mimic” random assignment (i.e., aim 
to balance baseline variables in treatment and control 
groups)
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Control by Matching

 Matching can only be done on known and 
observable characteristics that have been 
measured

 Perfect matching is not always possible
 It is critical to measure the right variables that will 

minimize variability (e.g., prior achievement, 
SES)

 Limits generalizability by removing possibly 
informative variation (e.g., differences in 
teachers)

 May reduce the sample size (because the 
variation is reduced) needed for the study 
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Control by Statistical Adjustment
 A form of post-hoc pseudo-matching
 Uses statistical associations between outcomes and 

controls/covariates to simulate matching
 Reduces variation of outcomes in regression models
 Controlling for covariates increases precision of 

regression estimates (i.e., smaller standard errors)
 Statistical control is possible using known and 

observable characteristics only
 Does not necessarily address all preexisting 

differences prior to assignment to treatment or 
control conditions (ideally all relevant variables 
should be measured)
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Using Principles of 
Experimental Design

 When using random assignment, we do not have to 
know a lot to use it effectively
 Simply conduct random assignment of sample 

units to treatment and control conditions

 Nonetheless it is good practice to measure 
important covariates at the baseline of the 
experiment (e.g., prior achievement, SES) and 
included them in the analysis for more precise 
estimation

 It is also imperative to monitor the experiment to 
ensure random assignment is not compromised
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Using Principles of 
Experimental Design

 When using matching or statistical control, we have 
to think carefully, ahead of time, about which 
variables would be important to measure and control 
for in the analyses (to avoid omitted variable bias)

 Some thorough thinking when designing a quasi-
experiment or an observational study is necessary 
in order to measure all variables that are important 
to use in the study (i.e., that will produce equivalent 
groups)
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Using Principles of 
Experimental Design

 Random assignment may not be as efficient as 
matching or statistical control (i.e., may require 
larger sample sizes for the same power) 

 However, if covariates have been measured, they 
could/should be used in the power and the 
statistical analyses 

 Including these covariates in a regression model 
would reduce variability in the outcome and result 
in a more precise estimation (higher power of 
tests) 
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Basic Ideas of Design: 
Independent Variables

 Categorical independent variables are also called 
factors.

 The categories of factors are called levels
 Some independent variables can be manipulated, 

others cannot:
 Treatments are independent variables that can be 

manipulated
 Blocks (e.g., grades, schools) and covariates (e.g., 

gender, race) are independent variables that cannot 
be manipulated

 Units can be randomly assigned to treatment levels, but 
not to blocks. For example, students within a school 
(the block) can be assigned randomly to a treatment or 
a control condition 
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Blocks

 Blocks can be regions, states, cities, school 
districts, schools, grades, or even classrooms

 Blocks reduce variability (similar to matching)
 For example, assign randomly schools to 

treatment conditions within school districts (the 
blocks)

 Or assign randomly students or classrooms to 
treatment conditions within schools (the blocks)

 Block effects should be taken into account in a 
priori power computations and in statistical 
analyses. Blocks could be random of fixed 
effects  
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 Example:  schools are randomly assigned to 
treatment conditions 

 schools are nested within each 
treatment condition

Schools
1, 2, … ,m m + 1, … , 2m

Treatments

1 2

Basic Ideas of Design: 
Nesting & Crossing
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 Example:  classrooms or students are randomly 
assigned to treatment or control conditions within 
schools

 treatments are crossed with schools 

Basic Ideas of Design: 
Nesting & Crossing

Schools

1 2 … m

T1 T2
…

T1

T2 T1 T2
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Three Basic Designs
 Completely Randomized Design
 Treatments are randomly assigned to individuals (e.g., 

students). Nesting is not considered
 Cluster (or Group) Randomized Design
 Also called a Hierarchical Design
 For example, schools are assigned randomly to treatment or 

control groups and the same treatment is assigned to all 
units within the school (classes and students)

 Block Randomized Design
 For example, students are assigned randomly to treatments 

within schools or grades (the blocks)
 Larger units such as classes can also be assigned randomly 

to treatments within schools or grades (the blocks)
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Completely Randomized Design
 Individuals are randomly assigned to one of two 

treatments:
Treatment Control

Individual 1 Individual 1

Individual 2 Individual 2

… …

Individual n Individual n
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Cluster or Group Randomized Design
 Schools are randomly assigned to one of two 

treatments, all students within schools receive 
the treatment:
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Block Randomized Design
 Individuals are randomly assigned to one of two 

treatments within their school:



Randomization Procedures

 Could use a table of random numbers, but be sure to 
pick an arbitrary start point!

 Could use random number generators in statistical 
software packages. Be sure the seed value varies 
each time



Post Hoc Test to Check Randomization
 It is common practice to check whether random 

assignment was successful using observed variables 
(baseline equivalence of variables) 

 This is particularly important when the overall attrition 
and the attrition in treatment or control groups (i.e., 
differential attrition) is not low  

 This is a post hoc method that can identify variables 
where random assignment did not work as expected 
by design (i.e., the means of baseline covariates in the 
treatment are different than those in the control group)



Post Hoc Test to Check Randomization

 It is unclear that this procedure can discredit random 
assignment altogether (e.g., a mean difference may be 
observed by chance) unless there is systematic evidence

 It helps us identify which observed variables to include in 
our regression models as statistical controls to eliminate 
pre-existing differences

 Differences should not be significant and the magnitude 
of the mean difference should not exceed 0.25 standard 
deviations according to WWC



Post Hoc Test to Check Randomization

 What Works Clearinghouse (WWC) offers some useful 
guidelines about baseline equivalence of observed 
variables between treatment and control groups

 WWC offers some useful suggestions about attrition as 
well 

https://ies.ed.gov/ncee/wwc/Docs/referenceresources/WWC
-Standards-Handbook-v4-1-508.pdf

https://ies.ed.gov/ncee/wwc/Docs/referenceresources/WWC-Standards-Handbook-v4-1-508.pdf
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Sampling Models



Sampling Models

 They are closely linked with the research design 
and the statistical analysis stages 

 Example: Which sample will provide a more 
precise mean estimate? 
 Sample A, with N = 1,000
 Sample B, with N = 3,000

 It is sample B because if the total population 
variance is σT

2 then the variance of the sample 
mean is σT

2/N (which indicates smaller variances 
of means in larger samples) 



37

Sampling Models in Educational Research

 Simple random samples are rare in large-scale 
field research in education

 Educational populations have nested structures 
(multiple levels, units of different sizes – classes, 
schools, districts) 
 For example, students nested within classrooms within 

schools within districts within cities states and so forth 
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Sampling Models in Educational Research
 Survey research in education often exploits this 

nested structure for example by first sampling 
schools and then students within schools

 This sampling strategy is called multi-stage 
(multilevel) cluster sampling in survey research

 Example: Clusters such as schools are first 
sampled and then individuals such as students 
within clusters are sampled
 Two-stage (two-level) cluster sample

 Example:  Schools are first sampled, then 
classrooms, then students
 Three-stage (three-level) cluster sample
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Variance of the Mean of Clustered Sample: 
Two Levels
 The usual variance calculation is based on a 

simple random sample
 When clustering is used, the variance must reflect 

the dependence of individuals within a cluster
 The variance of the mean of a cluster sample:

2 2 2 2n
m mn mn
τ σ σ τ+

+ =

2

2

:
 Level-2 variance,  number of Level-2 units
Level-1 variance,  number of Level-1 units within a Level-2 unit

where
m
n

τ

σ

= =

= =
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Variance of the Mean of Clustered Sample
 The intraclass correlation coefficient (ICC), ρ,     

is the proportion of total variance at the 2nd level 
(and represents the clustering effect)

 If we write ρ = τ2/(σ2 + τ2), the variance of the 
mean becomes:

 where                           is called the design effect 
(it inflates the variance by a number greater than 
1 when          ) and captures the clustering effect 

( ) ( ) ( ) ( )
2 2 2 2

1 1 1n n
mn mn

σ τ σ τ
ρ ρ ρ

+ +
− + = + −      

( )1 1n ρ+ −  

0ρ ≠



41

Variance of the Mean of Clustered Sample
 This variance can be decomposed:

 where the total population variance is 
2 2 2
Tσ σ τ= +



42

Variance of the Mean of Clustered Sample

 Now suppose we have n students in p classes in 
each of m schools  

 Assume a sample size              , and same total 
population variance of      

 If the sampling strategy had been simple then 
the variance of the mean would be:

=N mpn
σ 2

T

( )σ 2
T

mpn
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Variance of the Mean of Clustered Sample: 
Three Levels

 Let’s consider a three-stage (three-level) cluster 
design: n students in p classes in each of m 
schools  

 Assume sample size              , and same total 
population variance of      

 We could have two levels of clustering and thus 
two ICCs, ρ3 (third or school level) and ρ2
(second or classroom level)

=N mpn
σ 2

T
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Variance of the Mean of Clustered Sample: 
Three Levels
 Suppose the variances at the first, second and 

third level are respectively σ2, τ2 and ω2. and the 
total variance is the sum of the three variances

 Then, the second level ICC is defined as 

ρ2 = τ2/(σ2 + τ2 + ω2)

 The third level ICC is defined as 

ρ3 = ω 2/(σ2 + τ2 + ω2)
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Variance of the Mean of Clustered Sample: 
Three Levels
 The variance of the mean is now:

 The three-level design effect is:

and captures the clustering effect at the second and third 
levels 

( ) ( ) ( )
σ

ρ ρ + − + − 

2

2 31 1 1T n pn
mpn

( ) ( )ρ ρ + − + − 2 31 1 1n pn
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Variance of the Mean of Clustered Sample

 Treatment effects in experiments and quasi-
experiments are mean differences between two 
groups

 The sampling model dictates the variance 
structure and estimation

 Variance impacts:
 Precision of treatment effect estimates
 Statistical power
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Inferential Population and Inference Models
 The inferential population or the inference model 

has implications for analysis and therefore for the 
design of experiments

 Question to consider:  Do we make inferences to 
the schools in this sample or to a larger 
population of schools?
 Inferences to the sampled schools or classes in the 

sample are called conditional inferences
 Inferences to a larger population of schools or 

classes are called unconditional inferences
 Bottom line:  Inferences are different in conditional or 

unconditional models
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Inferential Population and Inference Models

 In a conditional inference, we are estimating the 
mean treatment effect in the observed schools

 In an unconditional inferences, we are estimating 
the mean treatment effect in the population of 
schools from which the observed schools were 
sampled

 In both cases, a mean treatment effect is 
estimated, but they are different parameters with 
their own respective variances.
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Fixed and Random Effects
 Fixed Effects
 The levels of a factor in a study constitute the entire 

inference population
 The inference model is conditional
 The factor is called fixed, and its effects are called 

fixed effects
 Random Effects
 The levels of a factor in a study are sampled
 The inference model is unconditional
 The factor is called random, and its effects are                                           

called random effects



50

Specifying Analyses

Know the inference model

 Think through the levels of the design that will be 
included in the analysis

 Decide on the inference model for each level
Do I want to generalize to a larger universe than just 

the units in the sample? 
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Specifying Analyses

Know the design
 Generally, Covariate effects should be fixed 

effects

 Treatment effects should be random effects 
when the design permits it (e.g., block 
randomized designs)
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Applications to Experimental Design

 We will look in detail at the two most widely used 
experimental designs in education:
 Cluster randomized designs 
 Block randomized designs
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Cluster Randomized Design
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The Cluster Randomized Design

 We wish to compare one treatment and one 
control group

 Assignment to groups is made to whole schools 
randomly

 Assign 2m schools with n students in each school 
(assume balanced design)

 There are m schools in each treatment condition
 Assign all students in each school to the same 

treatment
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The Cluster Randomized Design
 Diagram of the Experiment:
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The Cluster Randomized Design
 Treatment 1 Schools:
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The Cluster Randomized Design
 Treatment 2 Schools:
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Two-Level CRT Design No Covariates: 
Conceptual Multilevel Model

Level 1 (individual level):

Level 2 (school level):

The ICC is:

Where         is the total variance 

( )β γ γ ξ ξ τ= + + 2
0 00 01 0 0           ~ 0,j j j jT N

( )β ε ε σ= + 2
0                         ~ 0,ij j ij ijY N

( )ρ τ σ τ τ σ= + =2 2 2 2 2
T

σ 2
T
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Two-Level CRT Design with Covariates: 
Conceptual Multilevel Model

Level 1 (individual level):

Level 2 (school level):

( )β γ γ γ ξ ξ τ= + + + 2
0 00 01 02 0 0 ~ 0,j j j j j AT W N

( )β β ε ε σ= + + 2
0 1 ~ 0,ij j j ij ij ij AY X N

σ τ2 2Note that  and  are adjustedA A

1 10Covariate effect  is fixedjβ γ=

1 10jβ γ=
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Two-Level CRT Design: Single Level 
Model with Random Effects

The previous models can be written as regression 
models (or mixed models) with additional errors terms 
(i.e., second level error) 

No covariates: 

Covariates: 

γ γ ξ ε= + + +00 01 0ij j j ijY T

γ γ γ γ ξ ε= + + + + +00 01 02 10 0ij j j ij j ijY T W X

Error
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Three-Level CRT Design No Covariates: 
Conceptual Multilevel Model 

Level 1 (individual level):

Level 2 (class level):

Level 3 (school level):

There are two ICCs:

( )π β ξ ξ τ= + 2
0 00 0 0                      ~ 0,jk k jk jk N

( )π ε ε σ= + 2
0                        ~ 0,ijk jk ijk ijkY N

( )ρ ω σ τ ω ω σ= + + =2 2 2 2 2 2
3    (School)T

β γ γ η= + +00 000 001 00k k kT ( )η ω2
00 ~ 0,k N

( )ρ τ σ τ ω τ σ= + + =2 2 2 2 2 2
2    (Classroom)T
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Three-Level CRT Design with Covariates: 
Conceptual Multilevel Model 

Level 1 (individual level):

Level 2 (classroom level):

Level 3 (school level):

( )π β β ξ ξ τ= + + 2
0 00 01 0 0                      ~ 0,jk k k jk jk jk AZ N

( )π π ε ε σ= + + 2
0 1                        ~ 0,ijk jk jk ijk ijk ijk AY X N

( )β γ γ γ η η ω= + + + 2
00 000 001 002 00 00 ~ 0,k k k k k AT W N

1 10jk kπ β=

01 010kβ γ=

10 100kβ γ=

1 10 100 01 010Covariate effects  and  are fixedjk k kπ β γ β γ= = =
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Three-Level CRT Design: Single Level 
Model with Random Effects

The previous three-level models can be written as 
regression models (or mixed models) with additional 
errors terms (i.e., second, third level errors) 

No covariates: 

Covariates: 

γ γ η ξ ε= + + + +000 001 00 0ijk k k jk ijkY T

γ γ γ γ γ

η ξ ε

= + + + + +

+ +
000 001 002 010 100

00 0

ijk k k jk ijk

k jk ijk

Y T W Z X

Error
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Standard Errors of Regression Estimates and 
Clustering

 Appropriate analyses of two and three level data 
must take into account the multilevel structure 
(clustering)

 Otherwise, the standard errors of regression 
estimates and statistical tests are incorrect

 The standard errors of treatment effect estimates 
are typically smaller when clustering is ignored

 This results to higher values of t-tests and higher 
probabilities of finding a significant effect 
(committing a Type I error)
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Standard Errors of Regression Estimates 
and Clustering

 There are at least three ways of adjusting 
standard errors for clustered data
 Conduct the analysis using multilevel models (e.g., 

SAS proc MIXED, SPSS linear mixed models, HLM, 
Mlwin, Stata mixed, R lmer)

 Post hoc corrections:
 Use the design effect: multiply the square root of the 

design effect with the standard error of the estimate.
 Use clustered standard errors (e.g., Stata) that adjust for 

clustering
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Power Analysis 
In CRD
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Statistical Power of Treatment Effect

 Power is the probability of detecting an anticipated 
treatment effect

 Alternatively, power is the probability of accepting 
the research hypothesis when it is true or rejecting 
the null hypothesis when it is false

 It is a critical component in the design of 
experiments 
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Statistical Power of Treatment Effect
 Power analysis translates to sample sizes needed 

to detect a treatment effect 
 For example, for a specific significance level (e.g., 

0.05) and for certain clustering effects (ICC values) 
how many students, classes, schools are needed 
to detect an anticipated treatment effect that is 
meaningful (e.g., 0.20 standard deviations) with a 
power probability greater than 0.80? 

 Typically, we use two-tailed tests 
 Typically, we assume one treatment and one 

control group and a balanced design (makes 
computations much easier)



Statistical Power of Treatment Effect
 Power in simple random sample designs (no 

clustering) depends on: 
 Significance level (larger p-value higher power)
 Effect size (magnitude of treatment effect – larger 

effect size higher power) 
 Sample size (larger sample size higher power)

 Typically, we assume non-directional hypotheses 
and two-tailed tests with significance level fixed at 
0.05

 We use treatment effect estimates that have been 
documented in previous work (primary studies or 
meta-analyses)

 We calculate the sample size necessary to achieve 
adequate power



Statistical Power of Treatment Effect
 Power analysis reduces to figuring out the 

sample size that will give us a high probability of 
detecting the treatment effect

 Every researcher's goal:  High power to detect a 
treatment effect
 The low bound of power is typically considered 0.80 as
 Ideally, we want power to be as close to 1 as possible 

(and the Type II error to be close to 0)
 Because power computations are not exact it is good 

practice to ensure power is much greater than 0.80
 In simple random samples designs we can look 

power up in a table for specific sample sizes and 
effect sizes (Cohen 1988)



Power of two-sample two-tailed t-test at .05 level

n d
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20

2 0.05 0.05 0.05 0.06 0.06 0.07 0.07 0.08 0.09 0.10 0.10 0.11
3 0.05 0.05 0.06 0.07 0.08 0.09 0.10 0.12 0.14 0.16 0.18 0.21
4 0.05 0.06 0.07 0.08 0.09 0.11 0.13 0.16 0.19 0.22 0.26 0.30
5 0.05 0.06 0.07 0.09 0.11 0.13 0.16 0.20 0.24 0.29 0.33 0.39
6 0.05 0.06 0.08 0.10 0.12 0.16 0.20 0.24 0.29 0.35 0.41 0.47
7 0.05 0.06 0.08 0.11 0.14 0.18 0.23 0.28 0.34 0.41 0.47 0.54
8 0.05 0.07 0.09 0.12 0.15 0.20 0.26 0.32 0.39 0.46 0.54 0.61
9 0.05 0.07 0.09 0.13 0.17 0.22 0.29 0.36 0.43 0.51 0.59 0.67
10 0.06 0.07 0.10 0.14 0.19 0.25 0.32 0.40 0.48 0.56 0.64 0.72
11 0.06 0.07 0.10 0.15 0.20 0.27 0.35 0.43 0.52 0.61 0.69 0.76
12 0.06 0.08 0.11 0.16 0.22 0.29 0.37 0.47 0.56 0.65 0.73 0.80
13 0.06 0.08 0.11 0.16 0.23 0.31 0.40 0.50 0.60 0.69 0.77 0.84
14 0.06 0.08 0.12 0.17 0.25 0.33 0.43 0.53 0.63 0.72 0.80 0.86
15 0.06 0.08 0.12 0.18 0.26 0.35 0.46 0.56 0.66 0.75 0.83 0.89
16 0.06 0.09 0.13 0.19 0.28 0.38 0.48 0.59 0.69 0.78 0.85 0.91
17 0.06 0.09 0.14 0.20 0.29 0.40 0.51 0.62 0.72 0.81 0.87 0.92
18 0.06 0.09 0.14 0.21 0.31 0.42 0.53 0.65 0.75 0.83 0.89 0.94
19 0.06 0.09 0.15 0.22 0.32 0.44 0.56 0.67 0.77 0.85 0.91 0.95
20 0.06 0.09 0.15 0.23 0.34 0.46 0.58 0.69 0.79 0.87 0.92 0.96
21 0.06 0.10 0.16 0.24 0.35 0.48 0.60 0.72 0.81 0.89 0.94 0.97
22 0.06 0.10 0.16 0.25 0.37 0.49 0.62 0.74 0.83 0.90 0.95 0.97
23 0.06 0.10 0.17 0.26 0.38 0.51 0.64 0.76 0.85 0.91 0.95 0.98
24 0.06 0.10 0.17 0.27 0.40 0.53 0.66 0.77 0.86 0.92 0.96 0.98
25 0.06 0.11 0.18 0.28 0.41 0.55 0.68 0.79 0.88 0.93 0.97 0.99
26 0.06 0.11 0.19 0.29 0.42 0.56 0.70 0.81 0.89 0.94 0.97 0.99
27 0.07 0.11 0.19 0.30 0.44 0.58 0.71 0.82 0.90 0.95 0.98 0.99
28 0.07 0.11 0.20 0.31 0.45 0.60 0.73 0.84 0.91 0.96 0.98 0.99
29 0.07 0.12 0.20 0.32 0.46 0.61 0.75 0.85 0.92 0.96 0.98 0.99
30 0.07 0.12 0.21 0.33 0.48 0.63 0.76 0.86 0.93 0.97 0.99 1.00


POWER TABLE FOR TWO SAMPLE

		Power of two-sample two-tailed t-test at .05 level

		n																d

				0.10		0.20		0.30		0.40		0.50		0.60		0.70		0.80		0.90		1.00		1.10		1.20		1.30		1.40		1.50

		2		0.05		0.05		0.05		0.06		0.06		0.07		0.07		0.08		0.09		0.10		0.10		0.11		0.13		0.14		0.15

		3		0.05		0.05		0.06		0.07		0.08		0.09		0.10		0.12		0.14		0.16		0.18		0.21		0.23		0.26		0.29

		4		0.05		0.06		0.07		0.08		0.09		0.11		0.13		0.16		0.19		0.22		0.26		0.30		0.34		0.38		0.43

		5		0.05		0.06		0.07		0.09		0.11		0.13		0.16		0.20		0.24		0.29		0.33		0.39		0.44		0.49		0.55

		6		0.05		0.06		0.08		0.10		0.12		0.16		0.20		0.24		0.29		0.35		0.41		0.47		0.53		0.59		0.65

		7		0.05		0.06		0.08		0.11		0.14		0.18		0.23		0.28		0.34		0.41		0.47		0.54		0.61		0.67		0.73

		8		0.05		0.07		0.09		0.12		0.15		0.20		0.26		0.32		0.39		0.46		0.54		0.61		0.68		0.74		0.80

		9		0.05		0.07		0.09		0.13		0.17		0.22		0.29		0.36		0.43		0.51		0.59		0.67		0.74		0.80		0.85

		10		0.06		0.07		0.10		0.14		0.19		0.25		0.32		0.40		0.48		0.56		0.64		0.72		0.78		0.84		0.89

		11		0.06		0.07		0.10		0.15		0.20		0.27		0.35		0.43		0.52		0.61		0.69		0.76		0.83		0.88		0.92

		12		0.06		0.08		0.11		0.16		0.22		0.29		0.37		0.47		0.56		0.65		0.73		0.80		0.86		0.91		0.94

		13		0.06		0.08		0.11		0.16		0.23		0.31		0.40		0.50		0.60		0.69		0.77		0.84		0.89		0.93		0.96

		14		0.06		0.08		0.12		0.17		0.25		0.33		0.43		0.53		0.63		0.72		0.80		0.86		0.91		0.95		0.97

		15		0.06		0.08		0.12		0.18		0.26		0.35		0.46		0.56		0.66		0.75		0.83		0.89		0.93		0.96		0.98

		16		0.06		0.09		0.13		0.19		0.28		0.38		0.48		0.59		0.69		0.78		0.85		0.91		0.94		0.97		0.98

		17		0.06		0.09		0.14		0.20		0.29		0.40		0.51		0.62		0.72		0.81		0.87		0.92		0.96		0.98		0.99

		18		0.06		0.09		0.14		0.21		0.31		0.42		0.53		0.65		0.75		0.83		0.89		0.94		0.97		0.98		0.99

		19		0.06		0.09		0.15		0.22		0.32		0.44		0.56		0.67		0.77		0.85		0.91		0.95		0.97		0.99		0.99

		20		0.06		0.09		0.15		0.23		0.34		0.46		0.58		0.69		0.79		0.87		0.92		0.96		0.98		0.99		1.00

		21		0.06		0.10		0.16		0.24		0.35		0.48		0.60		0.72		0.81		0.89		0.94		0.97		0.98		0.99		1.00

		22		0.06		0.10		0.16		0.25		0.37		0.49		0.62		0.74		0.83		0.90		0.95		0.97		0.99		0.99		1.00

		23		0.06		0.10		0.17		0.26		0.38		0.51		0.64		0.76		0.85		0.91		0.95		0.98		0.99		1.00		1.00

		24		0.06		0.10		0.17		0.27		0.40		0.53		0.66		0.77		0.86		0.92		0.96		0.98		0.99		1.00		1.00

		25		0.06		0.11		0.18		0.28		0.41		0.55		0.68		0.79		0.88		0.93		0.97		0.99		0.99		1.00		1.00

		26		0.06		0.11		0.19		0.29		0.42		0.56		0.70		0.81		0.89		0.94		0.97		0.99		1.00		1.00		1.00

		27		0.07		0.11		0.19		0.30		0.44		0.58		0.71		0.82		0.90		0.95		0.98		0.99		1.00		1.00		1.00

		28		0.07		0.11		0.20		0.31		0.45		0.60		0.73		0.84		0.91		0.96		0.98		0.99		1.00		1.00		1.00

		29		0.07		0.12		0.20		0.32		0.46		0.61		0.75		0.85		0.92		0.96		0.98		0.99		1.00		1.00		1.00

		30		0.07		0.12		0.21		0.33		0.48		0.63		0.76		0.86		0.93		0.97		0.99		1.00		1.00		1.00		1.00





POWER TABLE FOR ONE SAMPLE

		Table 2. Power of one-sample two-tailed t-test at .05 level

		n																d

				0.10		0.20		0.30		0.40		0.50		0.60		0.70		0.80		0.90		1.00		1.10		1.20		1.30		1.40		1.50

		2		0.05		0.05		0.05		0.06		0.06		0.07		0.07		0.08		0.09		0.09		0.10		0.11		0.12		0.13		0.13

		3		0.05		0.06		0.06		0.07		0.08		0.10		0.12		0.14		0.16		0.18		0.20		0.23		0.26		0.29		0.32

		4		0.05		0.06		0.07		0.09		0.11		0.14		0.17		0.21		0.25		0.29		0.34		0.38		0.43		0.48		0.53

		5		0.05		0.06		0.08		0.11		0.14		0.18		0.23		0.28		0.34		0.40		0.47		0.53		0.59		0.65		0.71

		6		0.06		0.07		0.09		0.13		0.17		0.22		0.29		0.36		0.43		0.51		0.58		0.66		0.72		0.78		0.83

		7		0.06		0.07		0.10		0.15		0.20		0.27		0.35		0.43		0.52		0.60		0.68		0.75		0.82		0.87		0.91

		8		0.06		0.08		0.11		0.17		0.23		0.31		0.40		0.50		0.59		0.68		0.76		0.83		0.88		0.92		0.95

		9		0.06		0.08		0.13		0.19		0.26		0.35		0.46		0.56		0.66		0.75		0.82		0.88		0.93		0.96		0.98

		10		0.06		0.09		0.14		0.21		0.29		0.40		0.51		0.62		0.72		0.80		0.87		0.92		0.95		0.98		0.99

		11		0.06		0.09		0.15		0.23		0.32		0.44		0.55		0.67		0.77		0.85		0.91		0.95		0.97		0.99		0.99

		12		0.06		0.10		0.16		0.25		0.35		0.48		0.60		0.71		0.81		0.88		0.93		0.97		0.98		0.99		1

		13		0.06		0.10		0.17		0.26		0.38		0.51		0.64		0.75		0.85		0.91		0.95		0.98		0.99		1		1

		14		0.06		0.11		0.18		0.28		0.41		0.55		0.68		0.79		0.88		0.93		0.97		0.99		0.99		1		1

		15		0.07		0.11		0.19		0.30		0.44		0.58		0.71		0.82		0.90		0.95		0.98		0.99		1		1		1

		16		0.07		0.12		0.20		0.32		0.47		0.61		0.75		0.85		0.92		0.96		0.98		0.99		1		1		1

		17		0.07		0.12		0.21		0.34		0.49		0.64		0.77		0.87		0.94		0.97		0.99		1		1		1		1

		18		0.07		0.13		0.23		0.36		0.52		0.67		0.80		0.89		0.95		0.98		0.99		1		1		1		1

		19		0.07		0.13		0.24		0.38		0.54		0.70		0.82		0.91		0.96		0.98		1		1		1		1		1

		20		0.07		0.14		0.25		0.40		0.57		0.72		0.84		0.92		0.97		0.99		1		1		1		1		1

		21		0.07		0.14		0.26		0.42		0.59		0.74		0.86		0.94		0.98		0.99		1		1		1		1		1

		22		0.07		0.15		0.27		0.43		0.61		0.77		0.88		0.95		0.98		0.99		1		1		1		1		1

		23		0.07		0.15		0.28		0.45		0.63		0.79		0.89		0.96		0.99		1		1		1		1		1		1

		24		0.08		0.16		0.29		0.47		0.65		0.80		0.91		0.96		0.99		1		1		1		1		1		1

		25		0.08		0.16		0.30		0.48		0.67		0.82		0.92		0.97		0.99		1		1		1		1		1		1

		26		0.08		0.17		0.31		0.50		0.69		0.84		0.93		0.98		0.99		1		1		1		1		1		1

		27		0.08		0.17		0.32		0.52		0.71		0.85		0.94		0.98		0.99		1		1		1		1		1		1

		28		0.08		0.18		0.33		0.53		0.72		0.86		0.95		0.98		1		1		1		1		1		1		1

		29		0.08		0.18		0.35		0.55		0.74		0.88		0.95		0.99		1		1		1		1		1		1		1

		30		0.08		0.19		0.36		0.56		0.75		0.89		0.96		0.99		1		1		1		1		1		1		1

		Table 2 Continued

		n																d

				0.10		0.20		0.30		0.40		0.50		0.60		0.70		0.80		0.90		1.00		1.10		1.20		1.30		1.40		1.50

		31		0.08		0.19		0.37		0.58		0.77		0.90		0.97		0.99		1		1		1		1		1		1		1

		32		0.09		0.20		0.38		0.59		0.78		0.91		0.97		0.99		1		1		1		1		1		1		1

		33		0.09		0.20		0.39		0.61		0.80		0.92		0.97		0.99		1		1		1		1		1		1		1

		34		0.09		0.21		0.40		0.62		0.81		0.92		0.98		1		1		1		1		1		1		1		1

		35		0.09		0.21		0.41		0.63		0.82		0.93		0.98		1		1		1		1		1		1		1		1

		36		0.09		0.22		0.42		0.65		0.83		0.94		0.98		1		1		1		1		1		1		1		1

		37		0.09		0.22		0.43		0.66		0.84		0.94		0.99		1		1		1		1		1		1		1		1

		38		0.09		0.23		0.44		0.67		0.85		0.95		0.99		1		1		1		1		1		1		1		1

		39		0.09		0.23		0.45		0.68		0.86		0.96		0.99		1		1		1		1		1		1		1		1

		40		0.10		0.24		0.46		0.69		0.87		0.96		0.99		1		1		1		1		1		1		1		1

		41		0.10		0.24		0.47		0.71		0.88		0.96		0.99		1		1		1		1		1		1		1		1

		42		0.10		0.24		0.48		0.72		0.89		0.97		0.99		1		1		1		1		1		1		1		1

		43		0.10		0.25		0.49		0.73		0.89		0.97		0.99		1		1		1		1		1		1		1		1

		44		0.10		0.25		0.49		0.74		0.90		0.97		1		1		1		1		1		1		1		1		1

		45		0.10		0.26		0.50		0.75		0.91		0.98		1		1		1		1		1		1		1		1		1

		46		0.10		0.26		0.51		0.76		0.91		0.98		1		1		1		1		1		1		1		1		1

		47		0.10		0.27		0.52		0.77		0.92		0.98		1		1		1		1		1		1		1		1		1

		48		0.10		0.27		0.53		0.78		0.92		0.98		1		1		1		1		1		1		1		1		1

		49		0.11		0.28		0.54		0.78		0.93		0.98		1		1		1		1		1		1		1		1		1

		50		0.11		0.28		0.55		0.79		0.93		0.99		1		1		1		1		1		1		1		1		1

		51		0.11		0.29		0.56		0.80		0.94		0.99		1		1		1		1		1		1		1		1		1

		52		0.11		0.29		0.57		0.81		0.94		0.99		1		1		1		1		1		1		1		1		1

		53		0.11		0.30		0.57		0.82		0.95		0.99		1		1		1		1		1		1		1		1		1

		54		0.11		0.30		0.58		0.82		0.95		0.99		1		1		1		1		1		1		1		1		1

		55		0.11		0.31		0.59		0.83		0.95		0.99		1		1		1		1		1		1		1		1		1

		56		0.11		0.31		0.60		0.84		0.96		0.99		1		1		1		1		1		1		1		1		1

		57		0.12		0.32		0.61		0.84		0.96		0.99		1		1		1		1		1		1		1		1		1

		58		0.12		0.32		0.61		0.85		0.96		0.99		1		1		1		1		1		1		1		1		1

		59		0.12		0.33		0.62		0.86		0.97		1		1		1		1		1		1		1		1		1		1

		60		0.12		0.33		0.63		0.86		0.97		1		1		1		1		1		1		1		1		1		1







Computing Statistical Power
 Power in clustered sample designs depends on:

 Significance level (0.05 level two-tails)

 Effect size δ (standardized mean difference)

 Sample sizes at each level of sampling 
(e.g., m clusters, n individuals per cluster)

 ICC structure (the variances at higher levels 
such as classroom or school)



Computing Statistical Power

 One could use the power tables provided by Cohen to 
compute power in cluster designs

 Two things need to be addressed: 
 The number of units will now be the number of 

clusters (e.g., schools) 
 The effect size needs to be modified to incorporate 

the effect of clustering (i.e., the design effect) 

 Once the new effect size and the new sample size are 
computed then one can compute power using 
methods provided by Hedges and Hedberg (2007), 
Hedges and Rhoads (2010), Konstantopoulos (2009)



Statistical Power in Two-Level CRD
 For example, clusters such as schools at the second 

or top level are randomly assigned to treatment or 
control groups 

 Cluster sampling is assumed at the top level (i.e., 
clusters are random effects)

 We assume one treatment and one control group

 Individuals such as students are nested within 
clusters
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Statistical Power: Two-Level CRD 
 The power of the t-test of the treatment effect is a 

function of the degrees of freedom (df) of the test 
and the non-centrality parameter     of the t-test

 The df are a function of the number of level-2 units 
(e.g., schools):                              (m = number of 
schools within each condition, q = number of level-
2 covariates)

 The non-centrality parameter is a function of the 
population treatment effect, the variance at the 
second level      (i.e., the ICC), and the number of 
level-1 (e.g., students) and level-2 units (e.g., 
schools)

 Covariates that reduce variances increase power

λ

2( 1)df m q= − −

2τ
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Statistical Power: Two-Level CRD 
without Covariates

 Power increases as the ICC decreases 
 Power increases as the effect size increases
 Power increases as the number of schools increases 
 Power increases as the number of students 

increases
 The number of schools affects power much more 

than the number of students
 Larger proportions of variance explained at each 

level leads to higher power. The effect of covariates 
at different levels depends on the number of clusters, 
the units within clusters, and the centering of level-1 
covariates (Konstantopoulos 2012)



Statistical Power in Two-Level CRD
 Thus, a researcher would want to 

 Sample more schools than students within schools 
(but within the budget) 

 Include covariates that explain much variability at 
each level (e.g., prior achievement, SES). However, 
level-2 covariates reduce the df of the t-test, which 
can reduce power to some degree (i.e., there is a 
trade off). Use top level covariates that explain much 
variance at that level 

 It is important to have an educated guess about the 
magnitude of the anticipated treatment effect



Statistical Power in Three-Level CRD
 Level-3 units or clusters (e.g., schools) are 

randomly assigned to treatment and control 
groups

 Level-2 units or sub-clusters (e.g., classrooms) 

 Level-1 units are individuals (e.g., students)

 Cluster sampling is assumed at the middle and 
top levels (i.e., schools and classrooms are 
random effects)
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Statistical Power of Treatment 
Effect: Three-Level CRD

 Suppose students (level-1 units) are nested within 
classes (level-2 units) and classes are nested within 
schools (level-3 units)

 The power of the t-test of the treatment effect is a 
function of the degrees of freedom (df) and the non-
centrality parameter     of the test    

 The df are a function of the number of level-3 units 
(e.g., schools):                             (m = number of 
schools within each condition, q = number of level-3 
covariates)

 The non-centrality parameter is a function of the 
population treatment effect, the variances (or ICCs) 
at the second the third levels, and the number of 
level-1, level-2, and level-3 units

λ

2( 1)df m q= − −



Statistical Power of Treatment 
Effect: Three-Level CRD

 The df are a function of the number of level-3 
units in the sample and the number of covariates 
at the third level

 The non-centrality parameter λ is a function of
 The number of level-3 units
 The number of level-2 units within level-3 units
 The number of level-1 units within level-2 and level-3 

units
 The clustering at the second and third levels
 The effect size (standardized treatment effect) 
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Power in Three-Level CRD: 
No Covariates

 Power increases as the variances (or ICCs) at the 
second and third levels decrease 

 Power increases as the effect size increases
 Power increases as the number of schools 

increases
 Power increases as the number of classes 

increases
 Power increases as the number of students 

increases
 The number of schools affects power more than 

the number of classes or students 



Statistical Power in Two-Level CRD
 Thus, a researcher would want to 
 sample more schools than classes or students within 

schools (but within the budget) 
 Include covariates that explain much variability at each 

level (e.g., prior achievement, SES). However, level-3 
covariates reduce the df of the t-test and may reduce 
power to some degree

 Have an idea of the anticipated treatment effect 
estimate

 Larger proportions of variance explained at each level 
leads to higher power. The effect of covariates at different 
levels depends on the number of clusters, the units within 
clusters, and the centering of lower level covariates 
(Konstantopoulos 2012)
 Use top-level covariates that explain much variance 

at the that level



Cost Considerations in CRD

 One can incorporate cost functions to maximize the 
non-centrality parameter and in turn the power 
estimates 

 The idea is to conduct optimal sampling of units at each 
level given a budget

 Two-level designs (Raudenbush, 1997) 

 Three-level designs (Konstantopoulos, 2009, 2011)

 Four-level designs (Hedges & Borenstein, 2014)
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Block Randomized Design



85

The Block Randomized Design (BRD)

 We wish to compare a treatment and a control 
group

 Assign randomly n units (e.g., students) to 
treatment or control conditions within blocks 
(e.g., grades, schools)

 Within each block there are 2n level-1 units 
(assume a balanced design)

 The block is treated as a random effect (i.e., the 
between-block variability is taken into account). 
The block is a cluster or sub-cluster and thus 
cluster sampling is assumed at the top level
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Two-Level BRD
 Diagram of the Experiment:
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Two-Level BRD
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Two-Level BRD No Covariates: 
ANOVA Framework

 The statistical model for the observation on the  
ith student in the jth treatment in the kth school:

µ α β αβ ε= + + + +ijk j k jk ijkY

µ
α

β
αβ

ε

=
=

=

=

=

where:
 grand mean
 average effect of being in treatment 
 average effect of being in school 

 treatment by school interaction
residual

j

k

jk

ijk

j

k
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School Effect

µ α β αβ ε= + + + +ijk j k jk ijkY

Treatment by school interaction 
(random effect)

School random effect
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Two-Level BRD: Conceptual 
Multilevel Framework (MLF) 
 Without covariates (student i in school j):

Level 1 (student level):

Level 2 (school level):

Subscript T indicates treatment 

β γ η= +0 00 0j j

0 1ij j j ij ijY Tβ β ε= + + ( )ε σ 2~ 0,ij N

( )η τ 2
0 ~ 0,j N

School random effect

β γ η= +1 10 1j j ( )η τ 2
1 ~ 0,j TN

Treatment by School interaction
(random effect)
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Two-Level BRD

 Without covariates the mixed model is:

γ γ η η ε= + + + +00 10 0 1ij ij j ij j ijY T T

School random effect

Treatment by School interaction
(random effect)
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Two-Level BRD with Covariates: 
Conceptual MLF

Level 1 (individual level):

Level 2 (school level):

Mixed model: 

β γ γ η

β γ η

β γ

= + +

= +

=

0 00 01 0

1 10 1

2 20

j j j

j j

j

W

0 1 2ij j j ij j ij ijY T Xβ β β ε= + + + ( )ε σ 2~ 0,ij AN

( )
( )

η τ

η τ

2
0

2
1

~ 0,

~ 0,
j A

j T

N

N

γ γ γ γ

η η ε

= + + + +

+ +
00 10 20 01

0 1

ij ij ij j

j ij j ij

Y T X W

T Error
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Two-Level BRD with 
Covariate X as Random: MLF 

Level 1 (individual level):

Level 2 (school level):

Mixed model: 

β γ γ η

β γ γ η

β γ γ η

= + +

= + +

= + +

0 00 01 0

1 10 11 1

2 20 21 2

j j j

j j j

j j j

W

W

W

0 1 2ij j j ij j ij ijY T Xβ β β ε= + + + ( )ε σ 2~ 0,ij AN

( )
( )
( )

η τ

η τ

η τ

2
0

2
1 ,

2
2 ,

~ 0,

~ 0,

~ 0,

j A

j T A

j X A

N

N

N

γ γ γ γ γ γ

η η η ε

= + + + + + +

+ + +
00 10 20 01 11 21

0 1 2

ij ij ij j ij j ij j

j ij j ij j ij

Y T X W T W X W

T X Error
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Fixed and Random Effects
 Should blocks be fixed or random? 
 Fixed Effects
 If the inference targets the blocks (e.g., schools) in the sample, 

then the schools can be treated as fixed effects (i.e., block of 
school dummies in the regression model) 

 Then a model with one fixed student level covariate becomes

where SC are school fixed effects (block of school dummies)

 Random Effects
 If the inference targets a larger population of blocks (e.g., 

schools), then the schools can be treated as random effects. The 
variances of the random effects are taken into account in a 
weighted estimation procedure. Cluster sampling at the top level 
is assumed 

γ γ γ εΓ Γ= + + + + +0 1 2 3 4ij ij ij j ij j ijY T X TSC SC
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Three-Level BRD No Covariates: 
ANOVA Framework

 Treatment assignment at first level (e.g., random 
assignment of students within a classroom). Level-2 
and level-3 units are random (cluster sampling is 
assumed)

 The statistical model for the observation on the  ith
student in the jth treatment in the kth classroom in the lth
school: µ α β αβ γ αγ ε= + + + + + +ijkl j k jk l jl ijklY

µ
α
β
αβ
γ
αγ

=
=

=

=

=

=

 grand mean
 average effect of being in treatment 
 average effect of being in class 

 treatment by class interaction
 average effect of being in school 

 treatment by school intera

j

k

jk

l

jl

j

k

l

ε =

ction
residualijkl
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Classroom and School Effects

Treatment by classroom 
interaction (random effect)

Classroom random effect

µ α β αβ γ αγ ε= + + + + + +ijkl j k jk l jl ijklY

School random effect

Treatment by school 
interaction (random effect)
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Three-Level BRD: 
Conceptual MLF

Without covariates (student i in classroom j in school k)      
Level 1 (individual level):

Level 2 (class level):

Level 3 (school level):

Subscript T indicates treatment.

( )β β ε ε σ= + + 2
0 1                ~ 0,ijk jk jk ijk ijk ijkY T N

( )
( )

β γ ξ ξ τ

β γ ξ ξ τ

= +

= +

2
0 00 0 0

2
1 10 1 1

                         ~ 0,

                          ~ 0,
jk k jk jk

jk k jk jk T

N

N

( )
( )

γ δ η η ω

γ δ η η ω

= +

= +

2
00 000 00 00

2
10 100 10 10

                         ~ 0,

                         ~ 0,
k k k

k k k T

N

N
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Three-Level BRD

 Without covariates the mixed model is:

δ δ ξ ξ

η η ε

= + + + +

+ +
000 100 0 1

00 10

ijk ijk jk ijk jk

j ijk j ijk

Y T T

T

School random effect Treatment by School interaction
(random effect)

Class random effect Treatment by Class interaction
(random effect)
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Three-Level BRD: Conceptual MLF
With covariates (student i in classroom j in school k)

Level 1 (individual level):

Level 2 (class level):

Level 3 (school level):

( )β β β ε ε σ= + + + 2
0 1 2              ~ 0,ijk jk jk ijk jk ijk ijk ijk AY T X N

( )
( )

β γ γ ξ ξ τ

β γ ξ ξ τ

β γ

= + +

= +

=

2
0 00 01 0 0

2
1 10 1 1

2 20

                         ~ 0,

                                       ~ 0,
jk k k jk jk jk A

jk k jk jk T

jk k

Z N

N

( )
( )

γ δ δ η η ω

γ δ η η ω

γ δ
γ δ

= + +

= +

=

=

2
00 000 001 00 00

2
10 100 10 10

01 010

20 200

                         ~ 0,

                                       ~ 0,
k k k k A

k k k T

k

k

W N

N
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Fixed and Random Effects
 Random Effects
 If the inference targets a larger population of schools, then 

schools are treated as random effects 
 The mixed model is:

 Fixed Effects
 If the inference targets the schools in the sample, then the 

schools are treated as fixed effects (i.e., block of school 
dummies) 

 Then the model becomes:

where SC are school fixed effects (dummy variables)

𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛿𝛿000 + 𝛿𝛿100𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛿𝛿200𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛿𝛿010𝑍𝑍𝑖𝑖𝑖𝑖 + 𝛿𝛿001𝑊𝑊𝑖𝑖 +
𝜉𝜉0𝑖𝑖𝑖𝑖 + 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝜉𝜉1𝑖𝑖𝑖𝑖 + 𝜂𝜂00𝑖𝑖 + 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝜂𝜂10𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖

𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛿𝛿0 + 𝛿𝛿1𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛿𝛿2𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛿𝛿3𝑍𝑍𝑖𝑖𝑖𝑖 + 𝛿𝛿4𝑊𝑊𝑖𝑖𝑖𝑖 + 𝜉𝜉0𝑖𝑖𝑖𝑖 +
𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝜉𝜉1𝑖𝑖𝑖𝑖 + 𝑺𝑺𝑪𝑪𝒌𝒌𝜟𝜟5 + 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑺𝑺𝑪𝑪𝒌𝒌𝜟𝜟6 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖
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Three-Level BRD No Covariates: 
ANOVA Framework

 Treatment assignment at second level (e.g., random 
assignment of classrooms within a grade/school). Level-2 
and level-3 units are random (cluster sampling is assumed)

 The statistical model for the observation on the  ith student 
in the jth classroom in the kth treatment in the lth school:

µ α β γ αγ ε= + + + + +ijkl k j l kl ijklY
µ
α
β

γ
αγ
ε

=
=

=

=

=

=

 grand mean
 average effect of being in treatment 
 average effect of being in class 
 average effect of being in school 

 treatment by school interaction
residual

k

j

l

kl

ijkl

k
j

l
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Classroom and School Effects

Classroom random effect

µ α β γ αγ ε= + + + + +ijkl k j l kl ijklY

School random effect

Treatment by school 
interaction (random effect)
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Three-Level BRD: 
Conceptual MLF

No Covariates (student i in classroom j in school k)
Level 1 (individual level):

Level 2 (class level):

Level 3 (school level):

Subscript T indicates treatment.

( )β ε ε σ= + 2
0                            ~ 0,ijk jk ijk ijkY N

( )β γ γ ξ ξ τ= + + 2
0 00 01 0 0            ~ 0,jk k k jk jk jkT N

( )
( )

γ δ η η ω

γ δ η η ω

= +

= +

2
00 000 00 00

2
01 010 10 10

                         ~ 0,

                         ~ 0,
k k k

k k k T

N

N
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Three-Level BRD

 Without covariates the mixed model is:

δ δ ξ

η η ε

= + + +

+ +
000 100 0

00 10

ijk jk jk

j jk j ijk

Y T

T

School random effect Treatment by School interaction
(random effect)

Class random effect
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Three-Level BRD: Conceptual MLF
With covariates (student i in classroom j in school k)

Level 1 (individual level):

Level 2 (class level):

Level 3 (school level):

( )β β ε ε σ= + + 2
0 1                           ~ 0,      ijk jk jk ijk ijk ijk AY X N

( )β γ γ γ ξ ξ τ

β γ

= + + +

=

2
0 00 01 02 0 0

1 10

            ~ 0,

                                               
jk k k jk k jk jk jk A

jk k

T Z N

( )
( )

γ δ δ η η ω

γ δ η η ω

γ δ
γ δ

= + +

= +

=

=

2
00 000 001 00 00

2
01 010 01 01

02 020

10 100

                         ~ 0,

                                       ~ 0,
k k k k A

k k k T

k

k

W N

N
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Fixed and Random Effects
 Random Effects
 Notice that in this design a whole classroom is 

randomly assigned to a treatment or a control group 
and is a sub-cluster 

 If the inference targets a larger population of schools, 
then the schools are also treated as random effects

 The mixed model is:

δ δ δ δ δ

ξ η η ε

= + + + + +

+ + +
000 010 100 020 001

0 00 01             
ijk jk ijk jk k

jk k jk k ijk

Y T X Z W

T
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What Determines Fixed 
or Random Effects

 The underlying assumptions about the sampling scheme 
involved are crucial in dictating whether effects should be 
fixed or random

 Similarly, the underlying assumptions about the inference 
(conditional or unconditional) are crucial in dictating 
whether effects should be fixed or random

 In small-scale empirical research sampling at the 
individual level (e.g., simple random or convenient 
sampling) is frequent. In this case the number of larger 
units such as classrooms or schools is small and thus 
classes or schools don’t necessarily need to be random. 
They can be modeled as fixed instead. The inference is 
about a population of students
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What Determines Fixed 
or Random Effects

 In large-scale empirical research larger units such as 
schools are often sampled. This is called cluster sampling 
and schools are modeled as random. If classes are 
sampled at the second stage, then classes are modeled 
as random as well. The inference is about a population of 
schools or classrooms

 When a larger unit such as a classroom or a school is the 
unit of random assignment then we would want to capture 
the clustering at that level (i.e., use random effects)

 Notice that clustering matters the most when we analyze 
outcomes at the individual level and the assignment is at a 
higher level (e.g., classroom or school)
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Fixed Vs Random Effects
 When the assignment is at the student level although 

students are nested within classes and schools the 
sampling frame does not always have to follow a 
cluster sampling. That is, perhaps the sampling 
involves individuals only and the inference is about 
populations of individuals (not classes or schools) 

 In such cases of block designs classes and schools do 
not need to be random. Instead, they can be modeled 
as fixed either as observed variables or as fixed effects 
(block of dummies)  

 In multilevel models treating larger units (e.g., schools) 
as random adds levels in the hierarchy (and 
variances). Modeling larger units (e.g., schools) as 
fixed however, reduces levels in the hierarchy 
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Power Analysis 
In BRD
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Statistical Power: Two-Level BRD 

 The power of the t-test of the treatment effect is a 
function of the degrees of freedom (df) and the 
non-centrality parameter    of the test 

 The df are a function of the number of level-2 
units (e.g., schools):                        (m = total 
number of schools, q = number of level-2 
covariates)

 The non-centrality parameter is a function of the 
population treatment effect, the variance of the 
treatment effect     , and the number of level-1 
(e.g., students) and level-2 units (e.g., schools)

λ

1df m q= − −

2
Tτ
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Statistical Power: Two-Level BRD 

 Power increases as the variance of the treatment 
effect decreases 

 Power increases as the effect size increases

 Power increases as the number of schools 
increases 

 Power increases as the number of students 
increases
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Statistical Power: Two-Level BRD 

 Covariates that explain variance at the first or 
second level increase power. Covariates at the 
second level reduce the df of the t-test (use 
fewer powerful school predictors)

 Power is typically higher in block randomized 
designs. One main reason is that the variance of 
the treatment effect across level-2 units is 
typically smaller than the variance of the 
outcome across level-2 units (between-school 
variance)
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Statistical Power of Treatment 
Effect: Three-Level BRD 

 Suppose students (level-1 units) are nested within 
classes (level-2 units) and classes are nested within 
schools (level-3 units)

 The power of the t-test of the treatment effect is a 
function of the degrees of freedom (df) and the non-
centrality parameter     of the test 

 The df are a function of the number of level-3 units 
(e.g., schools):                          (m = total number of 
schools, q = number of level-3 covariates) 

 The non-centrality parameter is a function of the 
population treatment effect, the variance of the 
treatment effect, and the number of level-1, level-2, 
and level-3 units

λ

1df m q= − −
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Power in Three-Level BRD: 
Treatment at First Level

 Power increases as the variance of the treatment 
effect decreases at the second or third levels 

 Power increases as the effect size increases
 Power increases as the number of schools 

increases
 Power increases as the number of classes 

increases
 Power increases as the number of students 

increases
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Power in Three-Level BRD: 
Treatment at First Level

 Covariates that explain much variance at the first, 
second, or third levels increase power. But level-3 
covariates reduce the df of the t-test

 Power is typically higher in this block randomized 
design. One main reason is that the variance of the 
treatment effect across level-2 or level-3 units is 
typically smaller than the variance of the outcome 
across level-2 or level-3 units (e.g., between-
classroom or between-school variance)

 When treatment is at the first level the design 
produces typically the highest power other things 
being equal



117

Power in Three-Level BRD: 
Treatment at Second Level

 Power increases as the variance of the treatment 
effect decreases at the third level 

 Power increases as the effect size increases
 Power increases as the number of schools 

increases
 Power increases as the number of classes 

increases
 Power increases as the number of students 

increases
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Power in Three-Level BRD: 
Treatment at Second Level

 Covariates that explain much variance at the 
first, second, or third levels increase power. But 
level-3 covariates reduce the df of the t-test



Cost Considerations in BRD: 
Optimal Design
 One can incorporate cost functions to maximize 

the non-centrality parameter and in turn the 
power estimates 

 The idea is to conduct optimal sampling of units 
at each level given a budget 

 Two-level designs (Raudenbush & Liu, 2000) 
 Three-level designs (Konstantopoulos, 2013)
 Four-level designs (Hedges & Borenstein, 2014)
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Centering
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Centering
 Centering is a transformation applied typically to 

the independent variables
 In simple random sample designs, a variable is 

centered by subtracting the mean from each 
value

 If Xi is the independent variable, the centered 
variable is:

where       is the mean of the  Xi’s in the sample
 The mean of the new centered variable is zero

( )•= −C
i iX X X

•X
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Centering

 Centering changes the value and the meaning of the 
intercept (it’s the mean of the outcome)

 Centering also changes the standard error of the 
intercept

 Centering does not change the value or the meaning of 
the regression coefficient

 Centering does not change the standard error of the 
regression coefficient
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Centering: Two-Level Case

 In two-level designs (e.g., students within schools, there 
are two kinds of centering:
 Grand mean centering of student predictors
 Group mean centering of student predictors

 Grand mean centering is subtracting the grand mean:

 Group mean centering is subtracting the group/school 
mean:

 These centering methods affect the interpretation of the 
school intercept

( )••= −Grand
ij ijX X X

( )•= −Group
ij ij iX X X
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Grand Mean Centering

 Grand mean centering changes the meaning of 
the intercept in the jth school

 The school intercept is now the mean outcome in 
the school minus an adjustment due to the 
student predictors

 With Grand Mean Centering: 
 Student predictors can explain school variance 
 Student predictors are not independent of school 

predictors
 Centering changes the precision of the 

intercept only (as in regression)
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Group Mean Centering
 Group mean centering changes the meaning of 

the intercept in the ith school
 The school intercept is now the mean outcome in 

the school not adjusted by student predictors
 With Group Mean Centering: 
 Student predictors cannot explain school variance 
 Student predictors are independent of school 

predictors
 Can use aggregate variables at the school level to 

reduce school-level variance
 Student predictors are adjusted for school differences 

(school effects)
 Centering changes the precision of all 

estimates
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Effect Sizes
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Effect Sizes

 Effect sizes can be defined in more than one way 
in multilevel designs

 The effect size is a typically defined a 
standardized mean difference

 The numerator is the mean difference 
 The key difference is which standard deviation is 

used to standardize the mean difference
 The easiest one to use is the total standard 

deviation
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Effect Sizes
 In two-level cluster randomized designs, this 

leads to:

 In three-level cluster randomized designs, this 
leads to:

01
2 2
S W

γ
δ

σ σ
=

+

Treatment effect

Total standard deviation

001
2 2 2
S C W

γ
δ

σ σ σ
=

+ +
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Effect Sizes
 In two-level block randomized designs, this leads 

to:

 In three-level block randomized designs, this 
leads to:

10
2 2 2
S T S W

γ
δ

σ σ σ×

=
+ +

Treatment effect

Total standard deviation

010
2 2 2 2
S T S C W

γ
δ

σ σ σ σ×

=
+ + +
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Questions About Analyses
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Questions About Analyses
Q. My schools all come from two districts, but I am 

randomly assigning the schools.  Do I have to take 
district into account some way?

A. In this case district is a block and a district dummy 
can be created and included as a school level 
variable to capture possible district differences. 
Perhaps districts shouldn’t be modeled as random 
effects in this case (very few units). Inferences are 
most likely made for these two districts only. An 
interaction term between treatment and district will 
also be informative 
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Questions About Analyses

Q. Why can’t I use regression to analyze experiments? 
What’s the advantage of multilevel models? 

A. Of course regression can be used to analyze 
experimental data. However, if there is clustering in 
the data, the standard errors of the estimates need 
to be adjusted. This can be done using either a 
design effect or clustered standard errors. Multilevel 
models correct the standard errors instantly via the 
estimation
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Questions About Analyses
Q. Can I use “school fixed effects” to analyze data 

from a randomized block design?

A. If cluster sampling is not assumed for schools, 
then one can use a regression model that controls 
for school fixed effects (differences between 
blocks). It is also recommended however, that one 
includes interactions between the treatment and 
schools. In practice, If there are 81 schools in the 
sample that suggests 160 dummies in the 
regression model. 

B. If cluster sampling is assumed for schools, one 
only needs to introduce two random effects (one 
to capture between-school variability and one to 
capture the treatment by school random effect 
interaction). This is a simpler model 
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Questions About Analyses

Q. We randomly assigned, but our assignment was 
corrupted by treatment switchers. What do we 
do?

A. One could run an intention to treat (ITT) analysis 
that estimates the effect of the initial assignment 
(make sure you have collected such data). A 
robustness check would be to also run a treatment 
on the treated (TOT) analysis and compare the 
estimates. If the estimates are very similar, then 
switching was likely not a threat. One could also 
use initial random assignment as an instrument for 
treatment received. This is called an instrumental 
variables (IV) analysis and involves two stages
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Questions About Analyses
Q. We randomly assigned, but our assignment was 

corrupted by attrition.  What do we do?

A. Report the overall attrition as well as the attrition 
in the treatment and control schools separately 
(differential attrition). Show baseline equivalence 
in observed covariates in the analytic sample 
(after attrition) for the two groups especially if 
attrition is not low. If data on the initial sample 
are available, one could run an ITT analysis and 
compare these estimates to estimates of the 
TOT analysis. Alternatively, one could run an IV 
analysis using initial random assignment as the 
instrument  
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Questions About Analyses
Q. We randomly assigned but got a big imbalance on 

characteristics we care about (gender, race, language, 
SES, pretest scores). What do we do?

A. First, is there credible information about whether the 
experiment was compromised or not? Second, one could 
check whether baseline differences are non-significant 
once strata are taken into account. Another possibility is to 
use these variables in propensity score methods that aim to 
create similar groups for the two treatment conditions. Or in 
the regression or multilevel model one could include these 
covariates as statistical controls to correct for selection. 
Perhaps interactions between treatment and characteristics  
should also be included in the model. Note that when 
student characteristics are not part of the random 
assignment process imbalance is possible. 
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Questions About Analyses
Q. We want to use student covariates to improve 

precision, but we find that they act somewhat 
differently in different schools (have different 
slopes).  What do we do?

A. In a multilevel model one can model student 
covariates as random effects at the school level 
(i.e., cross-level interaction random effects) and 
compute their variances across schools. In a 
regression model one would need to create 
student covariate by school interactions (that 
may produce a large number of interaction 
effects if many schools)  
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Questions About Analyses

Q. We get somewhat different variances in 
different schools.  Should we use robust 
standard errors?

A. Non-constant variance needs to be taken into 
account in the computation of standard errors. 
A common way to address the problem of 
variance heterogeneity is to compute robust 
standard errors
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